Cargando…
PGraphD*: Methods for Drift Detection and Localisation Using Deep Learning Modelling of Business Processes
This paper presents a set of methods, jointly called PGraphD*, which includes two new methods (PGraphDD-QM and PGraphDD-SS) for drift detection and one new method (PGraphDL) for drift localisation in business processes. The methods are based on deep learning and graphs, with PGraphDD-QM and PGraphDD...
Autores principales: | Hanga, Khadijah Muzzammil, Kovalchuk, Yevgeniya, Gaber, Mohamed Medhat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324690/ https://www.ncbi.nlm.nih.gov/pubmed/35885132 http://dx.doi.org/10.3390/e24070910 |
Ejemplares similares
-
Deep imitation learning for 3D navigation tasks
por: Hussein, Ahmed, et al.
Publicado: (2017) -
Applying Deep Learning in Business
por: Castanedo, Federico
Publicado: (2019) -
Support vector machine and deep-learning object detection for localisation of hard exudates
por: Kurilová, Veronika, et al.
Publicado: (2021) -
Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
por: Abbas, Asmaa, et al.
Publicado: (2020) -
Automatic Cone Photoreceptor Localisation in Healthy and Stargardt Afflicted Retinas Using Deep Learning
por: Davidson, Benjamin, et al.
Publicado: (2018)