Cargando…
Structural Smoothing Low-Rank Matrix Restoration Based on Sparse Coding and Dual-Weighted Model
Group sparse coding (GSC) uses the non-local similarity of images as constraints, which can fully exploit the structure and group sparse features of images. However, it only imposes the sparsity on the group coefficients, which limits the effectiveness of reconstructing real images. Low-rank regular...
Autores principales: | Wu, Jiawei, Wang, Hengyou |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324757/ https://www.ncbi.nlm.nih.gov/pubmed/35885170 http://dx.doi.org/10.3390/e24070946 |
Ejemplares similares
-
CT Image Sequence Restoration Based on Sparse and Low-Rank Decomposition
por: Gou, Shuiping, et al.
Publicado: (2013) -
Low-Rank and Sparse Matrix Decomposition for Genetic
Interaction Data
por: Wang, Yishu, et al.
Publicado: (2015) -
Simultaneous Patch-Group Sparse Coding with Dual-Weighted ℓ(p) Minimization for Image Restoration
por: Zhang, Jiachao, et al.
Publicado: (2021) -
Self-supervised sparse coding scheme for image classification based on low rank representation
por: Li, Ao, et al.
Publicado: (2018) -
Deep learning through sparse and low-rank modeling
por: Wang, Zhangyang, et al.
Publicado: (2019)