Cargando…

Thermal Stability of Fructooligosaccharides Extracted from Defatted Rice Bran: A Kinetic Study Using Liquid Chromatography-Tandem Mass Spectrometry

Thermal degradation kinetics of fructooligosaccharides (FOS) in defatted rice bran were studied at temperatures of 90, 100, and 110 °C. FOS extracted from rice bran and dissolved in buffers at pH values of 5.0, 6.0, and 7.0 were prepared for the thermal treatments. The residual FOS (including 1-kest...

Descripción completa

Detalles Bibliográficos
Autores principales: Le, Hoang Phuong, Hong, Diep Thanh Nghi, Nguyen, Thi Thao Loan, Le, Thi My Hanh, Koseki, Shige, Ho, Thanh Binh, Ly-Nguyen, Binh
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324758/
https://www.ncbi.nlm.nih.gov/pubmed/35885297
http://dx.doi.org/10.3390/foods11142054
Descripción
Sumario:Thermal degradation kinetics of fructooligosaccharides (FOS) in defatted rice bran were studied at temperatures of 90, 100, and 110 °C. FOS extracted from rice bran and dissolved in buffers at pH values of 5.0, 6.0, and 7.0 were prepared for the thermal treatments. The residual FOS (including 1-kestose (GF2), nystose (GF3), and 1F-fructofuranosylnystose (GF4)) contents were determined using the ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method. The results showed that the thermal degradation kinetics of GF2, GF3, and GF4 followed a first-order kinetic model. Thermal degradation rate constants (k values) of GF2, GF3, and GF4 at different temperature and pH values were estimated using the first-order kinetic equation and SAS 9.1. As a result, these k values decreased gradually as the pH of the sample increased from 5.0 to 7.0. The Arrhenius model was applied to describe the heat dependence of the k-values. The activation energy (E(a)) was calculated for each case of GF2, GF3, and GF4 degradation at pH values of 5.0, 6.0, and 7.0. The result showed that rice bran FOS is very thermostable at neutral pH while more labile at acidic pH.