Cargando…

Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience

Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites in...

Descripción completa

Detalles Bibliográficos
Autores principales: Dussarrat, Thomas, Prigent, Sylvain, Latorre, Claudio, Bernillon, Stéphane, Flandin, Amélie, Díaz, Francisca P., Cassan, Cédric, Van Delft, Pierre, Jacob, Daniel, Varala, Kranthi, Joubes, Jérôme, Gibon, Yves, Rolin, Dominique, Gutiérrez, Rodrigo A., Pétriacq, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324839/
https://www.ncbi.nlm.nih.gov/pubmed/35288949
http://dx.doi.org/10.1111/nph.18095
_version_ 1784756897545453568
author Dussarrat, Thomas
Prigent, Sylvain
Latorre, Claudio
Bernillon, Stéphane
Flandin, Amélie
Díaz, Francisca P.
Cassan, Cédric
Van Delft, Pierre
Jacob, Daniel
Varala, Kranthi
Joubes, Jérôme
Gibon, Yves
Rolin, Dominique
Gutiérrez, Rodrigo A.
Pétriacq, Pierre
author_facet Dussarrat, Thomas
Prigent, Sylvain
Latorre, Claudio
Bernillon, Stéphane
Flandin, Amélie
Díaz, Francisca P.
Cassan, Cédric
Van Delft, Pierre
Jacob, Daniel
Varala, Kranthi
Joubes, Jérôme
Gibon, Yves
Rolin, Dominique
Gutiérrez, Rodrigo A.
Pétriacq, Pierre
author_sort Dussarrat, Thomas
collection PubMed
description Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning‐based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty‐nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure.
format Online
Article
Text
id pubmed-9324839
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93248392022-07-30 Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience Dussarrat, Thomas Prigent, Sylvain Latorre, Claudio Bernillon, Stéphane Flandin, Amélie Díaz, Francisca P. Cassan, Cédric Van Delft, Pierre Jacob, Daniel Varala, Kranthi Joubes, Jérôme Gibon, Yves Rolin, Dominique Gutiérrez, Rodrigo A. Pétriacq, Pierre New Phytol Research Current crop yield of the best ideotypes is stagnating and threatened by climate change. In this scenario, understanding wild plant adaptations in extreme ecosystems offers an opportunity to learn about new mechanisms for resilience. Previous studies have shown species specificity for metabolites involved in plant adaptation to harsh environments. Here, we combined multispecies ecological metabolomics and machine learning‐based generalized linear model predictions to link the metabolome to the plant environment in a set of 24 species belonging to 14 families growing along an altitudinal gradient in the Atacama Desert. Thirty‐nine common compounds predicted the plant environment with 79% accuracy, thus establishing the plant metabolome as an excellent integrative predictor of environmental fluctuations. These metabolites were independent of the species and validated both statistically and biologically using an independent dataset from a different sampling year. Thereafter, using multiblock predictive regressions, metabolites were linked to climatic and edaphic stressors such as freezing temperature, water deficit and high solar irradiance. These findings indicate that plants from different evolutionary trajectories use a generic metabolic toolkit to face extreme environments. These core metabolites, also present in agronomic species, provide a unique metabolic goldmine for improving crop performances under abiotic pressure. John Wiley and Sons Inc. 2022-04-05 2022-06 /pmc/articles/PMC9324839/ /pubmed/35288949 http://dx.doi.org/10.1111/nph.18095 Text en © 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Dussarrat, Thomas
Prigent, Sylvain
Latorre, Claudio
Bernillon, Stéphane
Flandin, Amélie
Díaz, Francisca P.
Cassan, Cédric
Van Delft, Pierre
Jacob, Daniel
Varala, Kranthi
Joubes, Jérôme
Gibon, Yves
Rolin, Dominique
Gutiérrez, Rodrigo A.
Pétriacq, Pierre
Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience
title Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience
title_full Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience
title_fullStr Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience
title_full_unstemmed Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience
title_short Predictive metabolomics of multiple Atacama plant species unveils a core set of generic metabolites for extreme climate resilience
title_sort predictive metabolomics of multiple atacama plant species unveils a core set of generic metabolites for extreme climate resilience
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324839/
https://www.ncbi.nlm.nih.gov/pubmed/35288949
http://dx.doi.org/10.1111/nph.18095
work_keys_str_mv AT dussarratthomas predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT prigentsylvain predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT latorreclaudio predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT bernillonstephane predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT flandinamelie predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT diazfranciscap predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT cassancedric predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT vandelftpierre predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT jacobdaniel predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT varalakranthi predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT joubesjerome predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT gibonyves predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT rolindominique predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT gutierrezrodrigoa predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience
AT petriacqpierre predictivemetabolomicsofmultipleatacamaplantspeciesunveilsacoresetofgenericmetabolitesforextremeclimateresilience