Cargando…

Tree ring evidence of rapid development of drunken forest induced by permafrost warming

Black spruce trees growing on warming permafrost lean in all directions due to soil movement, forming a “drunken” forest. Two hypothetical drivers of drunken forest development are (i) loosening of the soil foundation induced by permafrost degradation in warm summers and (ii) mound rising induced by...

Descripción completa

Detalles Bibliográficos
Autores principales: Fujii, Kazumichi, Yasue, Koh, Matsuura, Yojiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324869/
https://www.ncbi.nlm.nih.gov/pubmed/35388942
http://dx.doi.org/10.1111/gcb.16176
Descripción
Sumario:Black spruce trees growing on warming permafrost lean in all directions due to soil movement, forming a “drunken” forest. Two hypothetical drivers of drunken forest development are (i) loosening of the soil foundation induced by permafrost degradation in warm summers and (ii) mound rising induced by freezing soil in winter. However, no evidence has previously clarified whether recent tree leaning is related to climate warming or is part of a natural hummock formation process. Here, we provide evidence that tree leaning and soil hummock formation have accelerated due to climate warming. We find that trees’ leaning events synchronize with the development of soil hummocks as recorded in tree rings with lignin‐rich cells. Tree leaning is caused by mound rising in winter due to refreezing of soil following deep thaws in summer, rather than by loosening of the soil foundation in summer. Hummock formation shifted from periodic events before 1960 to continuous mound rising in the warmer succeeding 50 years. Although soil change is generally a slow process, recent permafrost warming has induced rapid hummock formation, which threatens the stability of drunken forests and organic carbon in soil hummocks based on shallow permafrost table.