Cargando…
Regularization Meets Enhanced Multi-Stage Fusion Features: Making CNN More Robust against White-Box Adversarial Attacks
Regularization has become an important method in adversarial defense. However, the existing regularization-based defense methods do not discuss which features in convolutional neural networks (CNN) are more suitable for regularization. Thus, in this paper, we propose a multi-stage feature fusion net...
Autores principales: | Zhang, Jiahuan, Maeda, Keisuke, Ogawa, Takahiro, Haseyama, Miki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324889/ https://www.ncbi.nlm.nih.gov/pubmed/35891112 http://dx.doi.org/10.3390/s22145431 |
Ejemplares similares
-
Tensor-Based Emotional Category Classification via Visual Attention-Based Heterogeneous CNN Feature Fusion
por: Moroto, Yuya, et al.
Publicado: (2020) -
Reliable Estimation of Deterioration Levels via Late Fusion Using Multi-View Distress Images for Practical Inspection
por: Maeda, Keisuke, et al.
Publicado: (2021) -
Adversarial attacks and adversarial robustness in computational pathology
por: Ghaffari Laleh, Narmin, et al.
Publicado: (2022) -
Adversarially Robust Learning via Entropic Regularization
por: Jagatap, Gauri, et al.
Publicado: (2022) -
Deterioration Level Estimation Based on Convolutional Neural Network Using Confidence-Aware Attention Mechanism for Infrastructure Inspection
por: Ogawa, Naoki, et al.
Publicado: (2022)