Cargando…

Cross-Sectional Blood Metabolite Markers of Hypertension: A Multicohort Analysis of 44,306 Individuals from the COnsortium of METabolomics Studies

Hypertension is the main modifiable risk factor for cardiovascular morbidity and mortality but discovering molecular mechanisms for targeted treatment has been challenging. Here we investigate associations of blood metabolite markers with hypertension by integrating data from nine intercontinental c...

Descripción completa

Detalles Bibliográficos
Autores principales: Louca, Panayiotis, Nogal, Ana, Moskal, Aurélie, Goulding, Neil J., Shipley, Martin J., Alkis, Taryn, Lindbohm, Joni V., Hu, Jie, Kifer, Domagoj, Wang, Ni, Chawes, Bo, Rexrode, Kathryn M., Ben-Shlomo, Yoav, Kivimaki, Mika, Murphy, Rachel A., Yu, Bing, Gunter, Marc J., Suhre, Karsten, Lawlor, Deborah A., Mangino, Massimo, Menni, Cristina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324896/
https://www.ncbi.nlm.nih.gov/pubmed/35888725
http://dx.doi.org/10.3390/metabo12070601
_version_ 1784756914731614208
author Louca, Panayiotis
Nogal, Ana
Moskal, Aurélie
Goulding, Neil J.
Shipley, Martin J.
Alkis, Taryn
Lindbohm, Joni V.
Hu, Jie
Kifer, Domagoj
Wang, Ni
Chawes, Bo
Rexrode, Kathryn M.
Ben-Shlomo, Yoav
Kivimaki, Mika
Murphy, Rachel A.
Yu, Bing
Gunter, Marc J.
Suhre, Karsten
Lawlor, Deborah A.
Mangino, Massimo
Menni, Cristina
author_facet Louca, Panayiotis
Nogal, Ana
Moskal, Aurélie
Goulding, Neil J.
Shipley, Martin J.
Alkis, Taryn
Lindbohm, Joni V.
Hu, Jie
Kifer, Domagoj
Wang, Ni
Chawes, Bo
Rexrode, Kathryn M.
Ben-Shlomo, Yoav
Kivimaki, Mika
Murphy, Rachel A.
Yu, Bing
Gunter, Marc J.
Suhre, Karsten
Lawlor, Deborah A.
Mangino, Massimo
Menni, Cristina
author_sort Louca, Panayiotis
collection PubMed
description Hypertension is the main modifiable risk factor for cardiovascular morbidity and mortality but discovering molecular mechanisms for targeted treatment has been challenging. Here we investigate associations of blood metabolite markers with hypertension by integrating data from nine intercontinental cohorts from the COnsortium of METabolomics Studies. We included 44,306 individuals with circulating metabolites (up to 813). Metabolites were aligned and inverse normalised to allow intra-platform comparison. Logistic models adjusting for covariates were performed in each cohort and results were combined using random-effect inverse-variance meta-analyses adjusting for multiple testing. We further conducted canonical pathway analysis to investigate the pathways underlying the hypertension-associated metabolites. In 12,479 hypertensive cases and 31,827 controls without renal impairment, we identified 38 metabolites, associated with hypertension after adjusting for age, sex, body mass index, ethnicity, and multiple testing. Of these, 32 metabolite associations, predominantly lipid (steroids and fatty acyls) and organic acids (amino-, hydroxy-, and keto-acids) remained after further adjusting for comorbidities and dietary intake. Among the identified metabolites, 5 were novel, including 2 bile acids, 2 glycerophospholipids, and ketoleucine. Pathway analysis further implicates the role of the amino-acids, serine/glycine, and bile acids in hypertension regulation. In the largest cross-sectional hypertension-metabolomics study to date, we identify 32 circulating metabolites (of which 5 novel and 27 confirmed) that are potentially actionable targets for intervention. Further in-vivo studies are needed to identify their specific role in the aetiology or progression of hypertension.
format Online
Article
Text
id pubmed-9324896
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93248962022-07-27 Cross-Sectional Blood Metabolite Markers of Hypertension: A Multicohort Analysis of 44,306 Individuals from the COnsortium of METabolomics Studies Louca, Panayiotis Nogal, Ana Moskal, Aurélie Goulding, Neil J. Shipley, Martin J. Alkis, Taryn Lindbohm, Joni V. Hu, Jie Kifer, Domagoj Wang, Ni Chawes, Bo Rexrode, Kathryn M. Ben-Shlomo, Yoav Kivimaki, Mika Murphy, Rachel A. Yu, Bing Gunter, Marc J. Suhre, Karsten Lawlor, Deborah A. Mangino, Massimo Menni, Cristina Metabolites Article Hypertension is the main modifiable risk factor for cardiovascular morbidity and mortality but discovering molecular mechanisms for targeted treatment has been challenging. Here we investigate associations of blood metabolite markers with hypertension by integrating data from nine intercontinental cohorts from the COnsortium of METabolomics Studies. We included 44,306 individuals with circulating metabolites (up to 813). Metabolites were aligned and inverse normalised to allow intra-platform comparison. Logistic models adjusting for covariates were performed in each cohort and results were combined using random-effect inverse-variance meta-analyses adjusting for multiple testing. We further conducted canonical pathway analysis to investigate the pathways underlying the hypertension-associated metabolites. In 12,479 hypertensive cases and 31,827 controls without renal impairment, we identified 38 metabolites, associated with hypertension after adjusting for age, sex, body mass index, ethnicity, and multiple testing. Of these, 32 metabolite associations, predominantly lipid (steroids and fatty acyls) and organic acids (amino-, hydroxy-, and keto-acids) remained after further adjusting for comorbidities and dietary intake. Among the identified metabolites, 5 were novel, including 2 bile acids, 2 glycerophospholipids, and ketoleucine. Pathway analysis further implicates the role of the amino-acids, serine/glycine, and bile acids in hypertension regulation. In the largest cross-sectional hypertension-metabolomics study to date, we identify 32 circulating metabolites (of which 5 novel and 27 confirmed) that are potentially actionable targets for intervention. Further in-vivo studies are needed to identify their specific role in the aetiology or progression of hypertension. MDPI 2022-06-28 /pmc/articles/PMC9324896/ /pubmed/35888725 http://dx.doi.org/10.3390/metabo12070601 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Louca, Panayiotis
Nogal, Ana
Moskal, Aurélie
Goulding, Neil J.
Shipley, Martin J.
Alkis, Taryn
Lindbohm, Joni V.
Hu, Jie
Kifer, Domagoj
Wang, Ni
Chawes, Bo
Rexrode, Kathryn M.
Ben-Shlomo, Yoav
Kivimaki, Mika
Murphy, Rachel A.
Yu, Bing
Gunter, Marc J.
Suhre, Karsten
Lawlor, Deborah A.
Mangino, Massimo
Menni, Cristina
Cross-Sectional Blood Metabolite Markers of Hypertension: A Multicohort Analysis of 44,306 Individuals from the COnsortium of METabolomics Studies
title Cross-Sectional Blood Metabolite Markers of Hypertension: A Multicohort Analysis of 44,306 Individuals from the COnsortium of METabolomics Studies
title_full Cross-Sectional Blood Metabolite Markers of Hypertension: A Multicohort Analysis of 44,306 Individuals from the COnsortium of METabolomics Studies
title_fullStr Cross-Sectional Blood Metabolite Markers of Hypertension: A Multicohort Analysis of 44,306 Individuals from the COnsortium of METabolomics Studies
title_full_unstemmed Cross-Sectional Blood Metabolite Markers of Hypertension: A Multicohort Analysis of 44,306 Individuals from the COnsortium of METabolomics Studies
title_short Cross-Sectional Blood Metabolite Markers of Hypertension: A Multicohort Analysis of 44,306 Individuals from the COnsortium of METabolomics Studies
title_sort cross-sectional blood metabolite markers of hypertension: a multicohort analysis of 44,306 individuals from the consortium of metabolomics studies
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324896/
https://www.ncbi.nlm.nih.gov/pubmed/35888725
http://dx.doi.org/10.3390/metabo12070601
work_keys_str_mv AT loucapanayiotis crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT nogalana crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT moskalaurelie crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT gouldingneilj crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT shipleymartinj crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT alkistaryn crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT lindbohmjoniv crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT hujie crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT kiferdomagoj crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT wangni crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT chawesbo crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT rexrodekathrynm crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT benshlomoyoav crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT kivimakimika crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT murphyrachela crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT yubing crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT guntermarcj crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT suhrekarsten crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT lawlordeboraha crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT manginomassimo crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies
AT mennicristina crosssectionalbloodmetabolitemarkersofhypertensionamulticohortanalysisof44306individualsfromtheconsortiumofmetabolomicsstudies