Cargando…
Mitigating transmit‐B(1) artifacts by predicting parallel transmission images with deep learning: A feasibility study using high‐resolution whole‐brain diffusion at 7 Tesla
PURPOSE: To propose a novel deep learning (DL) approach to transmit‐B(1) (B(1) (+))‐artifact mitigation without direct use of parallel transmission (pTx), by predicting pTx images from single‐channel transmission (sTx) images. METHODS: A deep encoder–decoder convolutional neural network was construc...
Autores principales: | Ma, Xiaodong, Uğurbil, Kâmil, Wu, Xiaoping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9324974/ https://www.ncbi.nlm.nih.gov/pubmed/35403237 http://dx.doi.org/10.1002/mrm.29238 |
Ejemplares similares
-
Cardiac gating using scattering of an 8‐channel parallel transmit coil at 7T
por: Jaeschke, Sven H.F., et al.
Publicado: (2017) -
Correction of vibration artifacts in DTI using phase-encoding reversal (COVIPER)
por: Mohammadi, Siawoosh, et al.
Publicado: (2012) -
Diaphragm position can be accurately estimated from the scattering of a parallel transmit RF coil at 7 T
por: Hess, Aaron T., et al.
Publicado: (2017) -
Prospective High-Resolution Respiratory-Resolved Whole-Heart MRI for Image-Guided Cardiovascular Interventions
por: Kolbitsch, Christoph, et al.
Publicado: (2012) -
Denoise magnitude diffusion magnetic resonance images via variance-stabilizing transformation and optimal singular-value manipulation
por: Ma, Xiaodong, et al.
Publicado: (2020)