Cargando…

A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI

PURPOSE: The synergistic use of k‐t undersampling and multiband (MB) imaging has the potential to provide extended slice coverage and high spatial resolution for first‐pass perfusion MRI. The low‐rank plus sparse (L + S) model has shown excellent performance for accelerating single‐band (SB) perfusi...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Changyu, Robinson, Austin, Wang, Yu, Bilchick, Kenneth C., Kramer, Christopher M., Weller, Daniel, Salerno, Michael, Epstein, Frederick H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325064/
https://www.ncbi.nlm.nih.gov/pubmed/35608225
http://dx.doi.org/10.1002/mrm.29281
_version_ 1784756957052141568
author Sun, Changyu
Robinson, Austin
Wang, Yu
Bilchick, Kenneth C.
Kramer, Christopher M.
Weller, Daniel
Salerno, Michael
Epstein, Frederick H.
author_facet Sun, Changyu
Robinson, Austin
Wang, Yu
Bilchick, Kenneth C.
Kramer, Christopher M.
Weller, Daniel
Salerno, Michael
Epstein, Frederick H.
author_sort Sun, Changyu
collection PubMed
description PURPOSE: The synergistic use of k‐t undersampling and multiband (MB) imaging has the potential to provide extended slice coverage and high spatial resolution for first‐pass perfusion MRI. The low‐rank plus sparse (L + S) model has shown excellent performance for accelerating single‐band (SB) perfusion MRI. METHODS: A MB data consistency method employing ESPIRiT maps and through‐plane coil information was developed. This data consistency method was combined with the temporal L + S constraint to form the slice‐L + S method. Slice‐L + S was compared to SB L + S and the sequential operations of split slice‐GRAPPA and SB L + S (seq‐SG‐L + S) using synthetic data formed from multislice SB images. Prospectively k‐t undersampled MB data were also acquired and reconstructed using seq‐SG‐L + S and slice‐L + S. RESULTS: Using synthetic data with total acceleration rates of 6–12, slice‐L + S outperformed SB L + S and seq‐SG‐L + S (N = 7 subjects) with respect to normalized RMSE and the structural similarity index (P < 0.05 for both). For the specific case with MB factor = 3 and rate 3 undersampling, or for SB imaging with rate 9 undersampling (N = 7 subjects), the normalized RMSE values were 0.037 ± 0.007, 0.042 ± 0.005, and 0.031 ± 0.004; and the structural similarity index values were 0.88 ± 0.03, 0.85 ± 0.03, and 0.89 ± 0.02 for SB L + S, seq‐SG‐L + S, and slice‐L + S, respectively (P < 0.05 for both). For prospectively undersampled MB data, slice‐L + S provided better image quality than seq‐SG‐L + S for rate 6 (N = 7) and rate 9 acceleration (N = 7) as scored by blinded experts. CONCLUSION: Slice‐L + S outperformed SB‐L + S and seq‐SG‐L + S and provides 9 slice coverage of the left ventricle with a spatial resolution of 1.5 mm × 1.5 mm with good image quality.
format Online
Article
Text
id pubmed-9325064
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93250642022-07-30 A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI Sun, Changyu Robinson, Austin Wang, Yu Bilchick, Kenneth C. Kramer, Christopher M. Weller, Daniel Salerno, Michael Epstein, Frederick H. Magn Reson Med Research Articles–Imaging Methodology PURPOSE: The synergistic use of k‐t undersampling and multiband (MB) imaging has the potential to provide extended slice coverage and high spatial resolution for first‐pass perfusion MRI. The low‐rank plus sparse (L + S) model has shown excellent performance for accelerating single‐band (SB) perfusion MRI. METHODS: A MB data consistency method employing ESPIRiT maps and through‐plane coil information was developed. This data consistency method was combined with the temporal L + S constraint to form the slice‐L + S method. Slice‐L + S was compared to SB L + S and the sequential operations of split slice‐GRAPPA and SB L + S (seq‐SG‐L + S) using synthetic data formed from multislice SB images. Prospectively k‐t undersampled MB data were also acquired and reconstructed using seq‐SG‐L + S and slice‐L + S. RESULTS: Using synthetic data with total acceleration rates of 6–12, slice‐L + S outperformed SB L + S and seq‐SG‐L + S (N = 7 subjects) with respect to normalized RMSE and the structural similarity index (P < 0.05 for both). For the specific case with MB factor = 3 and rate 3 undersampling, or for SB imaging with rate 9 undersampling (N = 7 subjects), the normalized RMSE values were 0.037 ± 0.007, 0.042 ± 0.005, and 0.031 ± 0.004; and the structural similarity index values were 0.88 ± 0.03, 0.85 ± 0.03, and 0.89 ± 0.02 for SB L + S, seq‐SG‐L + S, and slice‐L + S, respectively (P < 0.05 for both). For prospectively undersampled MB data, slice‐L + S provided better image quality than seq‐SG‐L + S for rate 6 (N = 7) and rate 9 acceleration (N = 7) as scored by blinded experts. CONCLUSION: Slice‐L + S outperformed SB‐L + S and seq‐SG‐L + S and provides 9 slice coverage of the left ventricle with a spatial resolution of 1.5 mm × 1.5 mm with good image quality. John Wiley and Sons Inc. 2022-05-24 2022-09 /pmc/articles/PMC9325064/ /pubmed/35608225 http://dx.doi.org/10.1002/mrm.29281 Text en © 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles–Imaging Methodology
Sun, Changyu
Robinson, Austin
Wang, Yu
Bilchick, Kenneth C.
Kramer, Christopher M.
Weller, Daniel
Salerno, Michael
Epstein, Frederick H.
A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
title A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
title_full A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
title_fullStr A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
title_full_unstemmed A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
title_short A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
title_sort slice‐low‐rank plus sparse (slice‐l + s) reconstruction method for k‐t undersampled multiband first‐pass myocardial perfusion mri
topic Research Articles–Imaging Methodology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325064/
https://www.ncbi.nlm.nih.gov/pubmed/35608225
http://dx.doi.org/10.1002/mrm.29281
work_keys_str_mv AT sunchangyu aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT robinsonaustin aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT wangyu aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT bilchickkennethc aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT kramerchristopherm aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT wellerdaniel aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT salernomichael aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT epsteinfrederickh aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT sunchangyu slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT robinsonaustin slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT wangyu slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT bilchickkennethc slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT kramerchristopherm slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT wellerdaniel slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT salernomichael slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri
AT epsteinfrederickh slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri