Cargando…
A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
PURPOSE: The synergistic use of k‐t undersampling and multiband (MB) imaging has the potential to provide extended slice coverage and high spatial resolution for first‐pass perfusion MRI. The low‐rank plus sparse (L + S) model has shown excellent performance for accelerating single‐band (SB) perfusi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325064/ https://www.ncbi.nlm.nih.gov/pubmed/35608225 http://dx.doi.org/10.1002/mrm.29281 |
_version_ | 1784756957052141568 |
---|---|
author | Sun, Changyu Robinson, Austin Wang, Yu Bilchick, Kenneth C. Kramer, Christopher M. Weller, Daniel Salerno, Michael Epstein, Frederick H. |
author_facet | Sun, Changyu Robinson, Austin Wang, Yu Bilchick, Kenneth C. Kramer, Christopher M. Weller, Daniel Salerno, Michael Epstein, Frederick H. |
author_sort | Sun, Changyu |
collection | PubMed |
description | PURPOSE: The synergistic use of k‐t undersampling and multiband (MB) imaging has the potential to provide extended slice coverage and high spatial resolution for first‐pass perfusion MRI. The low‐rank plus sparse (L + S) model has shown excellent performance for accelerating single‐band (SB) perfusion MRI. METHODS: A MB data consistency method employing ESPIRiT maps and through‐plane coil information was developed. This data consistency method was combined with the temporal L + S constraint to form the slice‐L + S method. Slice‐L + S was compared to SB L + S and the sequential operations of split slice‐GRAPPA and SB L + S (seq‐SG‐L + S) using synthetic data formed from multislice SB images. Prospectively k‐t undersampled MB data were also acquired and reconstructed using seq‐SG‐L + S and slice‐L + S. RESULTS: Using synthetic data with total acceleration rates of 6–12, slice‐L + S outperformed SB L + S and seq‐SG‐L + S (N = 7 subjects) with respect to normalized RMSE and the structural similarity index (P < 0.05 for both). For the specific case with MB factor = 3 and rate 3 undersampling, or for SB imaging with rate 9 undersampling (N = 7 subjects), the normalized RMSE values were 0.037 ± 0.007, 0.042 ± 0.005, and 0.031 ± 0.004; and the structural similarity index values were 0.88 ± 0.03, 0.85 ± 0.03, and 0.89 ± 0.02 for SB L + S, seq‐SG‐L + S, and slice‐L + S, respectively (P < 0.05 for both). For prospectively undersampled MB data, slice‐L + S provided better image quality than seq‐SG‐L + S for rate 6 (N = 7) and rate 9 acceleration (N = 7) as scored by blinded experts. CONCLUSION: Slice‐L + S outperformed SB‐L + S and seq‐SG‐L + S and provides 9 slice coverage of the left ventricle with a spatial resolution of 1.5 mm × 1.5 mm with good image quality. |
format | Online Article Text |
id | pubmed-9325064 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93250642022-07-30 A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI Sun, Changyu Robinson, Austin Wang, Yu Bilchick, Kenneth C. Kramer, Christopher M. Weller, Daniel Salerno, Michael Epstein, Frederick H. Magn Reson Med Research Articles–Imaging Methodology PURPOSE: The synergistic use of k‐t undersampling and multiband (MB) imaging has the potential to provide extended slice coverage and high spatial resolution for first‐pass perfusion MRI. The low‐rank plus sparse (L + S) model has shown excellent performance for accelerating single‐band (SB) perfusion MRI. METHODS: A MB data consistency method employing ESPIRiT maps and through‐plane coil information was developed. This data consistency method was combined with the temporal L + S constraint to form the slice‐L + S method. Slice‐L + S was compared to SB L + S and the sequential operations of split slice‐GRAPPA and SB L + S (seq‐SG‐L + S) using synthetic data formed from multislice SB images. Prospectively k‐t undersampled MB data were also acquired and reconstructed using seq‐SG‐L + S and slice‐L + S. RESULTS: Using synthetic data with total acceleration rates of 6–12, slice‐L + S outperformed SB L + S and seq‐SG‐L + S (N = 7 subjects) with respect to normalized RMSE and the structural similarity index (P < 0.05 for both). For the specific case with MB factor = 3 and rate 3 undersampling, or for SB imaging with rate 9 undersampling (N = 7 subjects), the normalized RMSE values were 0.037 ± 0.007, 0.042 ± 0.005, and 0.031 ± 0.004; and the structural similarity index values were 0.88 ± 0.03, 0.85 ± 0.03, and 0.89 ± 0.02 for SB L + S, seq‐SG‐L + S, and slice‐L + S, respectively (P < 0.05 for both). For prospectively undersampled MB data, slice‐L + S provided better image quality than seq‐SG‐L + S for rate 6 (N = 7) and rate 9 acceleration (N = 7) as scored by blinded experts. CONCLUSION: Slice‐L + S outperformed SB‐L + S and seq‐SG‐L + S and provides 9 slice coverage of the left ventricle with a spatial resolution of 1.5 mm × 1.5 mm with good image quality. John Wiley and Sons Inc. 2022-05-24 2022-09 /pmc/articles/PMC9325064/ /pubmed/35608225 http://dx.doi.org/10.1002/mrm.29281 Text en © 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles–Imaging Methodology Sun, Changyu Robinson, Austin Wang, Yu Bilchick, Kenneth C. Kramer, Christopher M. Weller, Daniel Salerno, Michael Epstein, Frederick H. A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI |
title | A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
|
title_full | A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
|
title_fullStr | A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
|
title_full_unstemmed | A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
|
title_short | A Slice‐Low‐Rank Plus Sparse (slice‐L + S) Reconstruction Method for k‐t Undersampled Multiband First‐Pass Myocardial Perfusion MRI
|
title_sort | slice‐low‐rank plus sparse (slice‐l + s) reconstruction method for k‐t undersampled multiband first‐pass myocardial perfusion mri |
topic | Research Articles–Imaging Methodology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325064/ https://www.ncbi.nlm.nih.gov/pubmed/35608225 http://dx.doi.org/10.1002/mrm.29281 |
work_keys_str_mv | AT sunchangyu aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT robinsonaustin aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT wangyu aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT bilchickkennethc aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT kramerchristopherm aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT wellerdaniel aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT salernomichael aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT epsteinfrederickh aslicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT sunchangyu slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT robinsonaustin slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT wangyu slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT bilchickkennethc slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT kramerchristopherm slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT wellerdaniel slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT salernomichael slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri AT epsteinfrederickh slicelowrankplussparseslicelsreconstructionmethodforktundersampledmultibandfirstpassmyocardialperfusionmri |