Cargando…

Chemical and Structural Elucidation of Lignin and Cellulose Isolated Using DES from Bagasse Based on Alkaline and Hydrothermal Pretreatment

The separation of cellulose, hemicellulose, and lignin components using deep eutectic solvent, which is a green solvent, to obtain corresponding chemicals can realize the effective separation and high-value utilization of these components at low cost. In this study, we used waste biomass sugarcane b...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Na, Xu, Baoming, Wang, Xinhui, Lang, Jinyan, Zhang, Heng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325185/
https://www.ncbi.nlm.nih.gov/pubmed/35890532
http://dx.doi.org/10.3390/polym14142756
Descripción
Sumario:The separation of cellulose, hemicellulose, and lignin components using deep eutectic solvent, which is a green solvent, to obtain corresponding chemicals can realize the effective separation and high-value utilization of these components at low cost. In this study, we used waste biomass sugarcane bagasse as the raw material, choline chloride as the hydrogen bond acceptor, and lactic acid as the hydrogen bond donor to synthesize a deep eutectic solvent of choline chloride/lactic acid (L-DES) and treated sugarcane bagasse pretreated by alkali or hydrothermal methods to separate cellulose, hemicellulose, and lignin. In addition, we comparatively studied the effect of different pretreatment methods on lignin removal by DES and found that the lignin removal rate by L-DES after alkaline pretreatment was significantly higher than that after hydrothermal pretreatment, and the mechanism of action causing this difference is discussed.