Cargando…
Predicting the Severity of Neurological Impairment Caused by Ischemic Stroke Using Deep Learning Based on Diffusion-Weighted Images
Purpose: To develop a preliminary deep learning model that uses diffusion-weighted imaging (DWI) images to classify the severity of neurological impairment caused by ischemic stroke. Materials and Methods: This retrospective study included 851 ischemic stroke patients (711 patients in the training s...
Autores principales: | Zeng, Ying, Long, Chen, Zhao, Wei, Liu, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325315/ https://www.ncbi.nlm.nih.gov/pubmed/35887776 http://dx.doi.org/10.3390/jcm11144008 |
Ejemplares similares
-
Deep Learning Approach Using Diffusion-Weighted Imaging to Estimate the Severity of Aphasia in Stroke Patients
por: Jeong, Soo, et al.
Publicado: (2022) -
Diffusion-weighted imaging as predictor of acute ischemic stroke etiology
por: Brunser, Alejandro Michel, et al.
Publicado: (2022) -
Predicting final ischemic stroke lesions from initial diffusion-weighted images using a deep neural network
por: Nazari-Farsani, Sanaz, et al.
Publicado: (2022) -
Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke
por: Liu, Chin-Fu, et al.
Publicado: (2021) -
Deep Learning-Based Diffusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Ischemic Penumbra in Early Cerebral Infarction
por: Sheng, Hui, et al.
Publicado: (2022)