Cargando…
Enhanced Energy-Storage Performances in Sodium Bismuth Titanate-Based Relaxation Ferroelectric Ceramics with Optimized Polarization by Tuning Sintering Temperature
Energy-storage capacitors based on relaxation ferroelectric ceramics have attracted a lot of interest in pulse power devices. How to improve the energy density by designing the structure of ceramics through simple approaches is still a challenge. Herein, enhanced energy-storage performances are achi...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325321/ https://www.ncbi.nlm.nih.gov/pubmed/35888448 http://dx.doi.org/10.3390/ma15144981 |
Sumario: | Energy-storage capacitors based on relaxation ferroelectric ceramics have attracted a lot of interest in pulse power devices. How to improve the energy density by designing the structure of ceramics through simple approaches is still a challenge. Herein, enhanced energy-storage performances are achieved in relaxation ferroelectric 0.9 (0.94Na(0.5)Bi(0.5)TiO(3)-0.06BaTiO(3))-0.1NaNbO(3) (NBT-BT-NN) ceramics by tuning sintering temperature. The original observation based on Kelvin probe force microscopy (KPFM) presented that the sintering temperature has a key effect on the electrical homogeneousness of the ceramics. It is found that a high electrical homogeneousness can induce quick and active domain switching due to the weakening of the constraint from built-in fields, resulting in a big polarization difference. This work provides a feasible strategy to design high-performance energy-storage ceramic capacitors. |
---|