Cargando…
Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts
Anthropogenic disturbance and climate change can result in dramatic increases in the emergence of new, ecologically novel, communities of organisms. We used a standardised framework to detect local novel communities in 2135 pollen time series over the last 25,000 years. Eight thousand years of post‐...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325357/ https://www.ncbi.nlm.nih.gov/pubmed/35545440 http://dx.doi.org/10.1111/ele.14016 |
_version_ | 1784757031850213376 |
---|---|
author | Staples, Timothy L. Kiessling, Wolfgang Pandolfi, John M. |
author_facet | Staples, Timothy L. Kiessling, Wolfgang Pandolfi, John M. |
author_sort | Staples, Timothy L. |
collection | PubMed |
description | Anthropogenic disturbance and climate change can result in dramatic increases in the emergence of new, ecologically novel, communities of organisms. We used a standardised framework to detect local novel communities in 2135 pollen time series over the last 25,000 years. Eight thousand years of post‐glacial warming coincided with a threefold increase in local novel community emergence relative to glacial estimates. Novel communities emerged predominantly at high latitudes and were linked to global and local temperature change across multi‐millennial time intervals. In contrast, emergence of locally novel communities in the last 200 years, although already on par with glacial retreat estimates, occurred at midlatitudes and near high human population densities. Anthropogenic warming does not appear to be strongly associated with modern local novel communities, but may drive widespread emergence in the future, with legacy effects for millennia after warming abates. |
format | Online Article Text |
id | pubmed-9325357 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93253572022-07-30 Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts Staples, Timothy L. Kiessling, Wolfgang Pandolfi, John M. Ecol Lett Letters Anthropogenic disturbance and climate change can result in dramatic increases in the emergence of new, ecologically novel, communities of organisms. We used a standardised framework to detect local novel communities in 2135 pollen time series over the last 25,000 years. Eight thousand years of post‐glacial warming coincided with a threefold increase in local novel community emergence relative to glacial estimates. Novel communities emerged predominantly at high latitudes and were linked to global and local temperature change across multi‐millennial time intervals. In contrast, emergence of locally novel communities in the last 200 years, although already on par with glacial retreat estimates, occurred at midlatitudes and near high human population densities. Anthropogenic warming does not appear to be strongly associated with modern local novel communities, but may drive widespread emergence in the future, with legacy effects for millennia after warming abates. John Wiley and Sons Inc. 2022-05-11 2022-06 /pmc/articles/PMC9325357/ /pubmed/35545440 http://dx.doi.org/10.1111/ele.14016 Text en © 2022 The Authors. Ecology Letters published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Letters Staples, Timothy L. Kiessling, Wolfgang Pandolfi, John M. Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts |
title | Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts |
title_full | Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts |
title_fullStr | Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts |
title_full_unstemmed | Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts |
title_short | Emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts |
title_sort | emergence patterns of locally novel plant communities driven by past climate change and modern anthropogenic impacts |
topic | Letters |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325357/ https://www.ncbi.nlm.nih.gov/pubmed/35545440 http://dx.doi.org/10.1111/ele.14016 |
work_keys_str_mv | AT staplestimothyl emergencepatternsoflocallynovelplantcommunitiesdrivenbypastclimatechangeandmodernanthropogenicimpacts AT kiesslingwolfgang emergencepatternsoflocallynovelplantcommunitiesdrivenbypastclimatechangeandmodernanthropogenicimpacts AT pandolfijohnm emergencepatternsoflocallynovelplantcommunitiesdrivenbypastclimatechangeandmodernanthropogenicimpacts |