Cargando…
Free‐breathing self‐gated continuous‐IR spiral T1 mapping: Comparison of dual flip‐angle and Bloch‐Siegert B1‐corrected techniques
PURPOSE: To develop a B1‐corrrected single flip‐angle continuous acquisition strategy with free‐breathing and cardiac self‐gating for spiral T1 mapping, and compare it to a previous dual flip‐angle technique. METHODS: Data were continuously acquired using a spiral‐out trajectory, rotated by the gold...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325422/ https://www.ncbi.nlm.nih.gov/pubmed/35481596 http://dx.doi.org/10.1002/mrm.29269 |
Sumario: | PURPOSE: To develop a B1‐corrrected single flip‐angle continuous acquisition strategy with free‐breathing and cardiac self‐gating for spiral T1 mapping, and compare it to a previous dual flip‐angle technique. METHODS: Data were continuously acquired using a spiral‐out trajectory, rotated by the golden angle in time. During the first 2 s, off‐resonance Fermi RF pulses were applied to generate a Bloch‐Siegert shift B1 map, and the subsequent data were acquired with an inversion RF pulse applied every 4 s to create a T1* map. The final T1 map was generated from the B1 and the T1* maps by using a look‐up table that accounted for slice profile effects, yielding more accurate T1 values. T1 values were compared to those from inversion recovery (IR) spin echo (phantom only), MOLLI, SAturation‐recovery single‐SHot Acquisition (SASHA), and previously proposed dual flip‐angle results. This strategy was evaluated in a phantom and 25 human subjects. RESULTS: The proposed technique showed good agreement with IR spin‐echo results in the phantom experiment. For in‐vivo studies, the proposed technique and the previously proposed dual flip‐angle method were more similar to SASHA results than to MOLLI results. CONCLUSIONS: B1‐corrected single flip‐angle T1 mapping successfully acquired B1 and T1 maps in a free‐breathing, continuous‐IR spiral acquisition, providing a method with improved accuracy to measure T1 using a continuous Look‐Locker acquisition, as compared to the previously proposed dual excitation flip‐angle technique. |
---|