Cargando…
Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries
The development of cost‐effective and long‐life rechargeable aluminium ion batteries (AIBs) shows promising prospects for sustainable energy storage applications. Here, we report a heteroatom π‐conjugated polymer featuring synergistic C=O and C=N active centres as a new cathode material in AIBs usin...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325520/ https://www.ncbi.nlm.nih.gov/pubmed/35332641 http://dx.doi.org/10.1002/anie.202203646 |
_version_ | 1784757071977119744 |
---|---|
author | Peng, Xiyue Xie, Yuan Baktash, Ardeshir Tang, Jiayong Lin, Tongen Huang, Xia Hu, Yuxiang Jia, Zhongfan Searles, Debra J. Yamauchi, Yusuke Wang, Lianzhou Luo, Bin |
author_facet | Peng, Xiyue Xie, Yuan Baktash, Ardeshir Tang, Jiayong Lin, Tongen Huang, Xia Hu, Yuxiang Jia, Zhongfan Searles, Debra J. Yamauchi, Yusuke Wang, Lianzhou Luo, Bin |
author_sort | Peng, Xiyue |
collection | PubMed |
description | The development of cost‐effective and long‐life rechargeable aluminium ion batteries (AIBs) shows promising prospects for sustainable energy storage applications. Here, we report a heteroatom π‐conjugated polymer featuring synergistic C=O and C=N active centres as a new cathode material in AIBs using a low‐cost AlCl(3)/urea electrolyte. Density functional theory (DFT) calculations reveal the fused C=N sites in the polymer not only benefit good π‐conjugation but also enhance the redox reactivity of C=O sites, which enables the polymer to accommodate four AlCl(2)(urea)(2) (+) per repeating unit. By integrating the polymer with carbon nanotubes, the hybrid cathode exhibits a high discharge capacity and a long cycle life (295 mAh g(−1) at 0.1 A g(−1) and 85 mAh g(−1) at 1 A g(−1) over 4000 cycles). The achieved specific energy density of 413 Wh kg(−1) outperforms most Al–organic batteries reported to date. The synergistic redox‐active sites strategy sheds light on the rational design of organic electrode materials. |
format | Online Article Text |
id | pubmed-9325520 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93255202022-07-30 Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries Peng, Xiyue Xie, Yuan Baktash, Ardeshir Tang, Jiayong Lin, Tongen Huang, Xia Hu, Yuxiang Jia, Zhongfan Searles, Debra J. Yamauchi, Yusuke Wang, Lianzhou Luo, Bin Angew Chem Int Ed Engl Research Articles The development of cost‐effective and long‐life rechargeable aluminium ion batteries (AIBs) shows promising prospects for sustainable energy storage applications. Here, we report a heteroatom π‐conjugated polymer featuring synergistic C=O and C=N active centres as a new cathode material in AIBs using a low‐cost AlCl(3)/urea electrolyte. Density functional theory (DFT) calculations reveal the fused C=N sites in the polymer not only benefit good π‐conjugation but also enhance the redox reactivity of C=O sites, which enables the polymer to accommodate four AlCl(2)(urea)(2) (+) per repeating unit. By integrating the polymer with carbon nanotubes, the hybrid cathode exhibits a high discharge capacity and a long cycle life (295 mAh g(−1) at 0.1 A g(−1) and 85 mAh g(−1) at 1 A g(−1) over 4000 cycles). The achieved specific energy density of 413 Wh kg(−1) outperforms most Al–organic batteries reported to date. The synergistic redox‐active sites strategy sheds light on the rational design of organic electrode materials. John Wiley and Sons Inc. 2022-04-13 2022-06-20 /pmc/articles/PMC9325520/ /pubmed/35332641 http://dx.doi.org/10.1002/anie.202203646 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Research Articles Peng, Xiyue Xie, Yuan Baktash, Ardeshir Tang, Jiayong Lin, Tongen Huang, Xia Hu, Yuxiang Jia, Zhongfan Searles, Debra J. Yamauchi, Yusuke Wang, Lianzhou Luo, Bin Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries |
title | Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries |
title_full | Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries |
title_fullStr | Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries |
title_full_unstemmed | Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries |
title_short | Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redox‐Active Sites for High‐Performance Aluminium Organic Batteries |
title_sort | heterocyclic conjugated polymer nanoarchitectonics with synergistic redox‐active sites for high‐performance aluminium organic batteries |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325520/ https://www.ncbi.nlm.nih.gov/pubmed/35332641 http://dx.doi.org/10.1002/anie.202203646 |
work_keys_str_mv | AT pengxiyue heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT xieyuan heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT baktashardeshir heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT tangjiayong heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT lintongen heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT huangxia heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT huyuxiang heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT jiazhongfan heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT searlesdebraj heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT yamauchiyusuke heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT wanglianzhou heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries AT luobin heterocyclicconjugatedpolymernanoarchitectonicswithsynergisticredoxactivesitesforhighperformancealuminiumorganicbatteries |