Cargando…
Voxel‐wise supervised analysis of tumors with multimodal engineered features to highlight interpretable biological patterns
BACKGROUND: Translation of predictive and prognostic image‐based learning models to clinical applications is challenging due in part to their lack of interpretability. Some deep‐learning‐based methods provide information about the regions driving the model output. Yet, due to the high‐level abstract...
Autores principales: | Escobar, Thibault, Vauclin, Sébastien, Orlhac, Fanny, Nioche, Christophe, Pineau, Pascal, Champion, Laurence, Brisse, Hervé, Buvat, Irène |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325536/ https://www.ncbi.nlm.nih.gov/pubmed/35302238 http://dx.doi.org/10.1002/mp.15603 |
Ejemplares similares
-
(18)F‐fluoromisonidazole uptake in advanced stage non‐small cell lung cancer: A voxel‐by‐voxel PET kinetics study
por: McGowan, Daniel R., et al.
Publicado: (2017) -
Design and evaluation of a modular multimodality imaging phantom to simulate heterogeneous uptake and enhancement patterns for radiomic quantification in hybrid imaging: A feasibility study
por: Kalisvaart, Gijsbert M., et al.
Publicado: (2022) -
INSIDEnet: Interpretable NonexpanSIve Data‐Efficient network for denoising in grating interferometry breast CT
por: van Gogh, Stefano, et al.
Publicado: (2022) -
MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas
por: Korfiatis, Panagiotis, et al.
Publicado: (2016) -
Semiautomated segmentation of head and neck cancers in 18F-FDG PET scans: A just-enough-interaction approach
por: Beichel, Reinhard R., et al.
Publicado: (2016)