Cargando…
Double-UV Photoionizaion Detector with Graphene Oxide-Coated Electrodes
The structure of a photoionization detector was optioned and researched. In order to solve the problem of the photoionization detector' lamp surface residue interference, a new structure of the self-cleaning double-UV detector was adopted. At the same time, the air flow field of the detector wa...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325650/ https://www.ncbi.nlm.nih.gov/pubmed/35911609 http://dx.doi.org/10.1155/2022/4330518 |
_version_ | 1784757103605317632 |
---|---|
author | Zhou, Qi Zhang, Xu Ma, Xu Zhang, Sixiang |
author_facet | Zhou, Qi Zhang, Xu Ma, Xu Zhang, Sixiang |
author_sort | Zhou, Qi |
collection | PubMed |
description | The structure of a photoionization detector was optioned and researched. In order to solve the problem of the photoionization detector' lamp surface residue interference, a new structure of the self-cleaning double-UV detector was adopted. At the same time, the air flow field of the detector was simulated by the finite element method. Through analyzing the results of the simulation experiment, further optimization of the gas channel for the microdetector was carried out, and the ionization chamber with axial flow structure was finally chosen. The new nanomaterial, graphene oxide was used to modify the surface of the collector plate of detector to improve the gas sensitivity and sensitivity of the photoionization detector. Through the experimental analysis, the performance indexes of detector were described in detail. The minimum detection limit of the detector is 2.5 × 10(−7). The linearity response of the detector was analyzed, and the linear correlation coefficient reaches 0.993. The experimental results show that the double-UV detector can improve the overall gas sensing characteristics and provide an ideal detection unit for volatile organic compound (VOC) gas detection. |
format | Online Article Text |
id | pubmed-9325650 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-93256502022-07-28 Double-UV Photoionizaion Detector with Graphene Oxide-Coated Electrodes Zhou, Qi Zhang, Xu Ma, Xu Zhang, Sixiang Appl Bionics Biomech Research Article The structure of a photoionization detector was optioned and researched. In order to solve the problem of the photoionization detector' lamp surface residue interference, a new structure of the self-cleaning double-UV detector was adopted. At the same time, the air flow field of the detector was simulated by the finite element method. Through analyzing the results of the simulation experiment, further optimization of the gas channel for the microdetector was carried out, and the ionization chamber with axial flow structure was finally chosen. The new nanomaterial, graphene oxide was used to modify the surface of the collector plate of detector to improve the gas sensitivity and sensitivity of the photoionization detector. Through the experimental analysis, the performance indexes of detector were described in detail. The minimum detection limit of the detector is 2.5 × 10(−7). The linearity response of the detector was analyzed, and the linear correlation coefficient reaches 0.993. The experimental results show that the double-UV detector can improve the overall gas sensing characteristics and provide an ideal detection unit for volatile organic compound (VOC) gas detection. Hindawi 2022-07-19 /pmc/articles/PMC9325650/ /pubmed/35911609 http://dx.doi.org/10.1155/2022/4330518 Text en Copyright © 2022 Qi Zhou et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhou, Qi Zhang, Xu Ma, Xu Zhang, Sixiang Double-UV Photoionizaion Detector with Graphene Oxide-Coated Electrodes |
title | Double-UV Photoionizaion Detector with Graphene Oxide-Coated Electrodes |
title_full | Double-UV Photoionizaion Detector with Graphene Oxide-Coated Electrodes |
title_fullStr | Double-UV Photoionizaion Detector with Graphene Oxide-Coated Electrodes |
title_full_unstemmed | Double-UV Photoionizaion Detector with Graphene Oxide-Coated Electrodes |
title_short | Double-UV Photoionizaion Detector with Graphene Oxide-Coated Electrodes |
title_sort | double-uv photoionizaion detector with graphene oxide-coated electrodes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325650/ https://www.ncbi.nlm.nih.gov/pubmed/35911609 http://dx.doi.org/10.1155/2022/4330518 |
work_keys_str_mv | AT zhouqi doubleuvphotoionizaiondetectorwithgrapheneoxidecoatedelectrodes AT zhangxu doubleuvphotoionizaiondetectorwithgrapheneoxidecoatedelectrodes AT maxu doubleuvphotoionizaiondetectorwithgrapheneoxidecoatedelectrodes AT zhangsixiang doubleuvphotoionizaiondetectorwithgrapheneoxidecoatedelectrodes |