Cargando…
lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering
In recent years, with the continuous development and innovation of high-throughput biotechnology, more and more evidence show that lncRNA plays an essential role in biological life activities and is related to the occurrence of various diseases. However, due to the high cost and time-consuming of tr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325687/ https://www.ncbi.nlm.nih.gov/pubmed/35882886 http://dx.doi.org/10.1038/s41598-022-16594-5 |
_version_ | 1784757111486414848 |
---|---|
author | Wang, Bo Liu, RunJie Zheng, XiaoDong Du, XiaoXin Wang, ZhengFei |
author_facet | Wang, Bo Liu, RunJie Zheng, XiaoDong Du, XiaoXin Wang, ZhengFei |
author_sort | Wang, Bo |
collection | PubMed |
description | In recent years, with the continuous development and innovation of high-throughput biotechnology, more and more evidence show that lncRNA plays an essential role in biological life activities and is related to the occurrence of various diseases. However, due to the high cost and time-consuming of traditional biological experiments, the number of associations between lncRNAs and diseases that rely on experiments to verify is minimal. Computer-aided study of lncRNA-disease association is an important method to study the development of the lncRNA-disease association. Using the existing data to establish a prediction model and predict the unknown lncRNA-disease association can make the biological experiment targeted and improve its accuracy of the biological experiment. Therefore, we need to find an accurate and efficient method to predict the relationship between lncRNA and diseases and help biologists complete the diagnosis and treatment of diseases. Most of the current lncRNA-disease association predictions do not consider the model instability caused by the actual data. Also, predictive models may produce data that overfit is not considered. This paper proposes a lncRNA-disease association prediction model (ENCFLDA) that combines an elastic network with matrix decomposition and collaborative filtering. This method uses the existing lncRNA-miRNA association data and miRNA-disease association data to predict the association between unknown lncRNA and disease, updates the matrix by matrix decomposition combined with the elastic network, and then obtains the final prediction matrix by collaborative filtering. This method uses the existing lncRNA-miRNA association data and miRNA-disease association data to predict the association of unknown lncRNAs with diseases. First, since the known lncRNA-disease association matrix is very sparse, the cosine similarity and KNN are used to update the lncRNA-disease association matrix. The matrix is then updated by matrix decomposition combined with an elastic net algorithm, to increase the stability of the overall prediction model and eliminate data overfitting. The final prediction matrix is then obtained through collaborative filtering based on lncRNA.Through simulation experiments, the results show that the AUC value of ENCFLDA can reach 0.9148 under the framework of LOOCV, which is higher than the prediction result of the latest model. |
format | Online Article Text |
id | pubmed-9325687 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-93256872022-07-28 lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering Wang, Bo Liu, RunJie Zheng, XiaoDong Du, XiaoXin Wang, ZhengFei Sci Rep Article In recent years, with the continuous development and innovation of high-throughput biotechnology, more and more evidence show that lncRNA plays an essential role in biological life activities and is related to the occurrence of various diseases. However, due to the high cost and time-consuming of traditional biological experiments, the number of associations between lncRNAs and diseases that rely on experiments to verify is minimal. Computer-aided study of lncRNA-disease association is an important method to study the development of the lncRNA-disease association. Using the existing data to establish a prediction model and predict the unknown lncRNA-disease association can make the biological experiment targeted and improve its accuracy of the biological experiment. Therefore, we need to find an accurate and efficient method to predict the relationship between lncRNA and diseases and help biologists complete the diagnosis and treatment of diseases. Most of the current lncRNA-disease association predictions do not consider the model instability caused by the actual data. Also, predictive models may produce data that overfit is not considered. This paper proposes a lncRNA-disease association prediction model (ENCFLDA) that combines an elastic network with matrix decomposition and collaborative filtering. This method uses the existing lncRNA-miRNA association data and miRNA-disease association data to predict the association between unknown lncRNA and disease, updates the matrix by matrix decomposition combined with the elastic network, and then obtains the final prediction matrix by collaborative filtering. This method uses the existing lncRNA-miRNA association data and miRNA-disease association data to predict the association of unknown lncRNAs with diseases. First, since the known lncRNA-disease association matrix is very sparse, the cosine similarity and KNN are used to update the lncRNA-disease association matrix. The matrix is then updated by matrix decomposition combined with an elastic net algorithm, to increase the stability of the overall prediction model and eliminate data overfitting. The final prediction matrix is then obtained through collaborative filtering based on lncRNA.Through simulation experiments, the results show that the AUC value of ENCFLDA can reach 0.9148 under the framework of LOOCV, which is higher than the prediction result of the latest model. Nature Publishing Group UK 2022-07-26 /pmc/articles/PMC9325687/ /pubmed/35882886 http://dx.doi.org/10.1038/s41598-022-16594-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Wang, Bo Liu, RunJie Zheng, XiaoDong Du, XiaoXin Wang, ZhengFei lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering |
title | lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering |
title_full | lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering |
title_fullStr | lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering |
title_full_unstemmed | lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering |
title_short | lncRNA-disease association prediction based on matrix decomposition of elastic network and collaborative filtering |
title_sort | lncrna-disease association prediction based on matrix decomposition of elastic network and collaborative filtering |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325687/ https://www.ncbi.nlm.nih.gov/pubmed/35882886 http://dx.doi.org/10.1038/s41598-022-16594-5 |
work_keys_str_mv | AT wangbo lncrnadiseaseassociationpredictionbasedonmatrixdecompositionofelasticnetworkandcollaborativefiltering AT liurunjie lncrnadiseaseassociationpredictionbasedonmatrixdecompositionofelasticnetworkandcollaborativefiltering AT zhengxiaodong lncrnadiseaseassociationpredictionbasedonmatrixdecompositionofelasticnetworkandcollaborativefiltering AT duxiaoxin lncrnadiseaseassociationpredictionbasedonmatrixdecompositionofelasticnetworkandcollaborativefiltering AT wangzhengfei lncrnadiseaseassociationpredictionbasedonmatrixdecompositionofelasticnetworkandcollaborativefiltering |