Cargando…
Simplified, interpretable graph convolutional neural networks for small molecule activity prediction
We here present a streamlined, explainable graph convolutional neural network (gCNN) architecture for small molecule activity prediction. We first conduct a hyperparameter optimization across nearly 800 protein targets that produces a simplified gCNN QSAR architecture, and we observe that such a mod...
Autores principales: | Weber, Jeffrey K., Morrone, Joseph A., Bagchi, Sugato, Pabon, Jan D. Estrada, Kang, Seung-gu, Zhang, Leili, Cornell, Wendy D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325818/ https://www.ncbi.nlm.nih.gov/pubmed/34817762 http://dx.doi.org/10.1007/s10822-021-00421-6 |
Ejemplares similares
-
Prediction and Interpretation of Polymer Properties
Using the Graph Convolutional Network
por: Park, Jaehong, et al.
Publicado: (2022) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Scalable training of graph convolutional neural networks for fast and accurate predictions of HOMO-LUMO gap in molecules
por: Choi, Jong Youl, et al.
Publicado: (2022) -
Predicting target–ligand interactions with graph convolutional networks for interpretable pharmaceutical discovery
por: Ruiz Puentes, Paola, et al.
Publicado: (2022) -
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
por: Pang, Shanchen, et al.
Publicado: (2021)