Cargando…
Fine-tuning of a generative neural network for designing multi-target compounds
Exploring the origin of multi-target activity of small molecules and designing new multi-target compounds are highly topical issues in pharmaceutical research. We have investigated the ability of a generative neural network to create multi-target compounds. Data sets of experimentally confirmed mult...
Autores principales: | Blaschke, Thomas, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325839/ https://www.ncbi.nlm.nih.gov/pubmed/34046745 http://dx.doi.org/10.1007/s10822-021-00392-8 |
Ejemplares similares
-
Compound dataset and custom code for deep generative multi-target compound design
por: Blaschke, Thomas, et al.
Publicado: (2021) -
Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2021) -
Application of Generative Autoencoder in De Novo Molecular Design
por: Blaschke, Thomas, et al.
Publicado: (2017) -
Fine-Tuning and the Stability of Recurrent Neural Networks
por: MacNeil, David, et al.
Publicado: (2011) -
Memory-assisted reinforcement learning for diverse molecular de novo design
por: Blaschke, Thomas, et al.
Publicado: (2020)