Cargando…
Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery
The support vector machine (SVM) algorithm is one of the most widely used machine learning (ML) methods for predicting active compounds and molecular properties. In chemoinformatics and drug discovery, SVM has been a state-of-the-art ML approach for more than a decade. A unique attribute of SVM is t...
Autores principales: | Rodríguez-Pérez, Raquel, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325859/ https://www.ncbi.nlm.nih.gov/pubmed/35304657 http://dx.doi.org/10.1007/s10822-022-00442-9 |
Ejemplares similares
-
Support Vector Machine Classification and Regression
Prioritize Different Structural Features for Binary Compound Activity
and Potency Value Prediction
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2017) -
Chemoinformatics and Drug Discovery
por: Xu, Jun, et al.
Publicado: (2002) -
Entering new publication territory in chemoinformatics and chemical information science
por: Bajorath, Jürgen
Publicado: (2015) -
Chemoinformatics Strategies for Leishmaniasis Drug Discovery
por: Ferreira, Leonardo L. G., et al.
Publicado: (2018) -
Influence of Varying Training Set Composition and
Size on Support Vector Machine-Based Prediction of Active Compounds
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2017)