Cargando…

A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer’s Disease

In clinical practice, several standardized neuropsychological tests have been designed to assess and monitor the neurocognitive status of patients with neurodegenerative diseases such as Alzheimer’s disease. Important research efforts have been devoted so far to the development of multivariate machi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lombardi, Angela, Diacono, Domenico, Amoroso, Nicola, Biecek, Przemysław, Monaco, Alfonso, Bellantuono, Loredana, Pantaleo, Ester, Logroscino, Giancarlo, De Blasi, Roberto, Tangaro, Sabina, Bellotti, Roberto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325942/
https://www.ncbi.nlm.nih.gov/pubmed/35882684
http://dx.doi.org/10.1186/s40708-022-00165-5
_version_ 1784757166011318272
author Lombardi, Angela
Diacono, Domenico
Amoroso, Nicola
Biecek, Przemysław
Monaco, Alfonso
Bellantuono, Loredana
Pantaleo, Ester
Logroscino, Giancarlo
De Blasi, Roberto
Tangaro, Sabina
Bellotti, Roberto
author_facet Lombardi, Angela
Diacono, Domenico
Amoroso, Nicola
Biecek, Przemysław
Monaco, Alfonso
Bellantuono, Loredana
Pantaleo, Ester
Logroscino, Giancarlo
De Blasi, Roberto
Tangaro, Sabina
Bellotti, Roberto
author_sort Lombardi, Angela
collection PubMed
description In clinical practice, several standardized neuropsychological tests have been designed to assess and monitor the neurocognitive status of patients with neurodegenerative diseases such as Alzheimer’s disease. Important research efforts have been devoted so far to the development of multivariate machine learning models that combine the different test indexes to predict the diagnosis and prognosis of cognitive decline with remarkable results. However, less attention has been devoted to the explainability of these models. In this work, we present a robust framework to (i) perform a threefold classification between healthy control subjects, individuals with cognitive impairment, and subjects with dementia using different cognitive indexes and (ii) analyze the variability of the explainability SHAP values associated with the decisions taken by the predictive models. We demonstrate that the SHAP values can accurately characterize how each index affects a patient’s cognitive status. Furthermore, we show that a longitudinal analysis of SHAP values can provide effective information on Alzheimer’s disease progression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40708-022-00165-5.
format Online
Article
Text
id pubmed-9325942
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-93259422022-07-28 A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer’s Disease Lombardi, Angela Diacono, Domenico Amoroso, Nicola Biecek, Przemysław Monaco, Alfonso Bellantuono, Loredana Pantaleo, Ester Logroscino, Giancarlo De Blasi, Roberto Tangaro, Sabina Bellotti, Roberto Brain Inform Research In clinical practice, several standardized neuropsychological tests have been designed to assess and monitor the neurocognitive status of patients with neurodegenerative diseases such as Alzheimer’s disease. Important research efforts have been devoted so far to the development of multivariate machine learning models that combine the different test indexes to predict the diagnosis and prognosis of cognitive decline with remarkable results. However, less attention has been devoted to the explainability of these models. In this work, we present a robust framework to (i) perform a threefold classification between healthy control subjects, individuals with cognitive impairment, and subjects with dementia using different cognitive indexes and (ii) analyze the variability of the explainability SHAP values associated with the decisions taken by the predictive models. We demonstrate that the SHAP values can accurately characterize how each index affects a patient’s cognitive status. Furthermore, we show that a longitudinal analysis of SHAP values can provide effective information on Alzheimer’s disease progression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40708-022-00165-5. Springer Berlin Heidelberg 2022-07-26 /pmc/articles/PMC9325942/ /pubmed/35882684 http://dx.doi.org/10.1186/s40708-022-00165-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research
Lombardi, Angela
Diacono, Domenico
Amoroso, Nicola
Biecek, Przemysław
Monaco, Alfonso
Bellantuono, Loredana
Pantaleo, Ester
Logroscino, Giancarlo
De Blasi, Roberto
Tangaro, Sabina
Bellotti, Roberto
A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer’s Disease
title A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer’s Disease
title_full A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer’s Disease
title_fullStr A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer’s Disease
title_full_unstemmed A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer’s Disease
title_short A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer’s Disease
title_sort robust framework to investigate the reliability and stability of explainable artificial intelligence markers of mild cognitive impairment and alzheimer’s disease
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9325942/
https://www.ncbi.nlm.nih.gov/pubmed/35882684
http://dx.doi.org/10.1186/s40708-022-00165-5
work_keys_str_mv AT lombardiangela arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT diaconodomenico arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT amorosonicola arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT biecekprzemysław arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT monacoalfonso arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT bellantuonoloredana arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT pantaleoester arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT logroscinogiancarlo arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT deblasiroberto arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT tangarosabina arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT bellottiroberto arobustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT lombardiangela robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT diaconodomenico robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT amorosonicola robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT biecekprzemysław robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT monacoalfonso robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT bellantuonoloredana robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT pantaleoester robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT logroscinogiancarlo robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT deblasiroberto robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT tangarosabina robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease
AT bellottiroberto robustframeworktoinvestigatethereliabilityandstabilityofexplainableartificialintelligencemarkersofmildcognitiveimpairmentandalzheimersdisease