Cargando…

SApredictor: An Expert System for Screening Chemicals Against Structural Alerts

The rapid and accurate evaluation of chemical toxicity is of great significance for estimation of chemical safety. In the past decades, a great number of excellent computational models have been developed for chemical toxicity prediction. But most machine learning models tend to be “black box”, whic...

Descripción completa

Detalles Bibliográficos
Autores principales: Hua, Yuqing, Cui, Xueyan, Liu, Bo, Shi, Yinping, Guo, Huizhu, Zhang, Ruiqiu, Li, Xiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326022/
https://www.ncbi.nlm.nih.gov/pubmed/35910729
http://dx.doi.org/10.3389/fchem.2022.916614
Descripción
Sumario:The rapid and accurate evaluation of chemical toxicity is of great significance for estimation of chemical safety. In the past decades, a great number of excellent computational models have been developed for chemical toxicity prediction. But most machine learning models tend to be “black box”, which bring about poor interpretability. In the present study, we focused on the identification and collection of structural alerts (SAs) responsible for a series of important toxicity endpoints. Then, we carried out effective storage of these structural alerts and developed a web-server named SApredictor (www.sapredictor.cn) for screening chemicals against structural alerts. People can quickly estimate the toxicity of chemicals with SApredictor, and the specific key substructures which cause the chemical toxicity will be intuitively displayed to provide valuable information for the structural optimization by medicinal chemists.