Cargando…
SApredictor: An Expert System for Screening Chemicals Against Structural Alerts
The rapid and accurate evaluation of chemical toxicity is of great significance for estimation of chemical safety. In the past decades, a great number of excellent computational models have been developed for chemical toxicity prediction. But most machine learning models tend to be “black box”, whic...
Autores principales: | Hua, Yuqing, Cui, Xueyan, Liu, Bo, Shi, Yinping, Guo, Huizhu, Zhang, Ruiqiu, Li, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326022/ https://www.ncbi.nlm.nih.gov/pubmed/35910729 http://dx.doi.org/10.3389/fchem.2022.916614 |
Ejemplares similares
-
Modeling and insights into the structural characteristics of drug-induced autoimmune diseases
por: Guo, Huizhu, et al.
Publicado: (2022) -
In Silico Prediction and Insights Into the Structural Basis of Drug Induced Nephrotoxicity
por: Shi, Yinping, et al.
Publicado: (2022) -
In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018) -
Corrigendum: In Silico Prediction of Chemical Toxicity for Drug Design Using Machine Learning Methods and Structural Alerts
por: Yang, Hongbin, et al.
Publicado: (2018) -
Association of proton pump inhibitors with gastric and colorectal cancer risk: A systematic review and meta-analysis
por: Guo, Huizhu, et al.
Publicado: (2023)