Cargando…
Early Prediction of Cardiogenic Shock Using Machine Learning
Cardiogenic shock (CS) is a severe condition with in-hospital mortality of up to 50%. Patients who develop CS may have previous cardiac history, but that may not always be the case, adding to the challenges in optimally identifying and managing these patients. Patients may present to a medical facil...
Autores principales: | Chang, Yale, Antonescu, Corneliu, Ravindranath, Shreyas, Dong, Junzi, Lu, Mingyu, Vicario, Francesco, Wondrely, Lisa, Thompson, Pam, Swearingen, Dennis, Acharya, Deepak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326048/ https://www.ncbi.nlm.nih.gov/pubmed/35911549 http://dx.doi.org/10.3389/fcvm.2022.862424 |
Ejemplares similares
-
A Retrospective Cohort Study of Clinical Factors Associated with Transitions of Care among COVID-19 Patients
por: Swearingen, Dennis, et al.
Publicado: (2021) -
Editorial: Cardiogenic Shock: Basic and Clinical Considerations
por: Acharya, Deepak, et al.
Publicado: (2021) -
Machine Learning for Prediction of Outcomes in Cardiogenic Shock
por: Rong, Fangning, et al.
Publicado: (2022) -
Data processing pipeline for cardiogenic shock prediction using machine learning
por: Jajcay, Nikola, et al.
Publicado: (2023) -
The CSP (Cardiogenic Shock Prognosis) Score: A Tool for Risk Stratification of Cardiogenic Shock
por: Tien, Yu-Tzu, et al.
Publicado: (2022)