Cargando…
Soft Attention Based DenseNet Model for Parkinson’s Disease Classification Using SPECT Images
OBJECTIVE: Deep learning algorithms have long been involved in the diagnosis of severe neurological disorders that interfere with patients’ everyday tasks, such as Parkinson’s disease (PD). The most effective imaging modality for detecting the condition is DaTscan, a variety of single-photon emissio...
Autores principales: | Thakur, Mahima, Kuresan, Harisudha, Dhanalakshmi, Samiappan, Lai, Khin Wee, Wu, Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326232/ https://www.ncbi.nlm.nih.gov/pubmed/35912076 http://dx.doi.org/10.3389/fnagi.2022.908143 |
Ejemplares similares
-
Classification of asymmetry in mammography via the DenseNet convolutional neural network
por: Liao, Tingting, et al.
Publicado: (2023) -
DenseNet_ HybWWoA: A DenseNet-Based Brain Metastasis Classification with a Hybrid Metaheuristic Feature Selection Strategy
por: Alshammari, Abdulaziz
Publicado: (2023) -
Reverse active learning based atrous DenseNet for pathological image classification
por: Li, Yuexiang, et al.
Publicado: (2019) -
DSNN: A DenseNet-Based SNN for Explainable Brain Disease Classification
por: Zhu, Ziquan, et al.
Publicado: (2022) -
Classification of Breast Cancer Histopathological Images Using DenseNet and Transfer Learning
por: Wakili, Musa Adamu, et al.
Publicado: (2022)