Cargando…
Development and Validation of a Non-invasive Model to Predict Liver Histological Lesions in Chronic Hepatitis B Patients With Persistently Normal Alanine Aminotransferase and Detectable Viremia
BACKGROUND: A critical and controversial issue is whether antiviral therapy should be recommended in chronic hepatitis B virus (HBV) infection patients with persistently normal alanine aminotransferase (PNALT) and detectable HBV DNA. The study aimed to develop a non-invasive model for predicting sig...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326251/ https://www.ncbi.nlm.nih.gov/pubmed/35911415 http://dx.doi.org/10.3389/fmed.2022.944547 |
_version_ | 1784757241825460224 |
---|---|
author | Hu, Qiankun Wang, Qianqian Xu, Wei Huang, Chenlu Tao, Shuai Qi, Xun Zhang, Yi Li, Xinyan Jiang, Xuhua Song, Jie Li, Qiang Chen, Liang Huang, Yuxian |
author_facet | Hu, Qiankun Wang, Qianqian Xu, Wei Huang, Chenlu Tao, Shuai Qi, Xun Zhang, Yi Li, Xinyan Jiang, Xuhua Song, Jie Li, Qiang Chen, Liang Huang, Yuxian |
author_sort | Hu, Qiankun |
collection | PubMed |
description | BACKGROUND: A critical and controversial issue is whether antiviral therapy should be recommended in chronic hepatitis B virus (HBV) infection patients with persistently normal alanine aminotransferase (PNALT) and detectable HBV DNA. The study aimed to develop a non-invasive model for predicting significant liver histological changes (SLHC), which is the histological indication for antiviral therapy in chronic hepatitis B (CHB) patients with PNALT and detectable HBV DNA. METHODS: 398 chronic HBV infection patients with PNALT and detectable HBV DNA who underwent liver biopsy were divided into the estimation set (n = 256) and validation set (n = 142). A multivariate logistic regression model was developed to predict SLHC in the estimation set, and the diagnostic performance was further validated in the validation set. RESULTS: 132 patients (33.2%) with PNALT and detectable HBV DNA had SLHC. Aspartate aminotransferase (AST), cholinesterase (ChE), and liver stiffness measurement (LSM) were identified as the independent predictors of SLHC. The AUROC of the SLHC index, which combined AST, ChE, and LSM, was 0.824 and 0.816 in the estimation and validation set, respectively, for the prediction of SLHC. Applying the SLHC index ≤ 0.15, the presence of SLHC could be excluded with high negative predictive value in the estimation set (93.2%) and in the validation set (90.2%). Applying the SLHC index ≥ 0.55, the presence of SLHC could be considered with high positive predictive value in the estimation set (79.2%) and in the validation set (76.5%). CONCLUSION: The SLHC index provides a high accuracy in predicting liver histological indication for antiviral therapy in CHB patients with PNALT and detectable HBV DNA. |
format | Online Article Text |
id | pubmed-9326251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93262512022-07-28 Development and Validation of a Non-invasive Model to Predict Liver Histological Lesions in Chronic Hepatitis B Patients With Persistently Normal Alanine Aminotransferase and Detectable Viremia Hu, Qiankun Wang, Qianqian Xu, Wei Huang, Chenlu Tao, Shuai Qi, Xun Zhang, Yi Li, Xinyan Jiang, Xuhua Song, Jie Li, Qiang Chen, Liang Huang, Yuxian Front Med (Lausanne) Medicine BACKGROUND: A critical and controversial issue is whether antiviral therapy should be recommended in chronic hepatitis B virus (HBV) infection patients with persistently normal alanine aminotransferase (PNALT) and detectable HBV DNA. The study aimed to develop a non-invasive model for predicting significant liver histological changes (SLHC), which is the histological indication for antiviral therapy in chronic hepatitis B (CHB) patients with PNALT and detectable HBV DNA. METHODS: 398 chronic HBV infection patients with PNALT and detectable HBV DNA who underwent liver biopsy were divided into the estimation set (n = 256) and validation set (n = 142). A multivariate logistic regression model was developed to predict SLHC in the estimation set, and the diagnostic performance was further validated in the validation set. RESULTS: 132 patients (33.2%) with PNALT and detectable HBV DNA had SLHC. Aspartate aminotransferase (AST), cholinesterase (ChE), and liver stiffness measurement (LSM) were identified as the independent predictors of SLHC. The AUROC of the SLHC index, which combined AST, ChE, and LSM, was 0.824 and 0.816 in the estimation and validation set, respectively, for the prediction of SLHC. Applying the SLHC index ≤ 0.15, the presence of SLHC could be excluded with high negative predictive value in the estimation set (93.2%) and in the validation set (90.2%). Applying the SLHC index ≥ 0.55, the presence of SLHC could be considered with high positive predictive value in the estimation set (79.2%) and in the validation set (76.5%). CONCLUSION: The SLHC index provides a high accuracy in predicting liver histological indication for antiviral therapy in CHB patients with PNALT and detectable HBV DNA. Frontiers Media S.A. 2022-07-13 /pmc/articles/PMC9326251/ /pubmed/35911415 http://dx.doi.org/10.3389/fmed.2022.944547 Text en Copyright © 2022 Hu, Wang, Xu, Huang, Tao, Qi, Zhang, Li, Jiang, Song, Li, Chen and Huang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Medicine Hu, Qiankun Wang, Qianqian Xu, Wei Huang, Chenlu Tao, Shuai Qi, Xun Zhang, Yi Li, Xinyan Jiang, Xuhua Song, Jie Li, Qiang Chen, Liang Huang, Yuxian Development and Validation of a Non-invasive Model to Predict Liver Histological Lesions in Chronic Hepatitis B Patients With Persistently Normal Alanine Aminotransferase and Detectable Viremia |
title | Development and Validation of a Non-invasive Model to Predict Liver Histological Lesions in Chronic Hepatitis B Patients With Persistently Normal Alanine Aminotransferase and Detectable Viremia |
title_full | Development and Validation of a Non-invasive Model to Predict Liver Histological Lesions in Chronic Hepatitis B Patients With Persistently Normal Alanine Aminotransferase and Detectable Viremia |
title_fullStr | Development and Validation of a Non-invasive Model to Predict Liver Histological Lesions in Chronic Hepatitis B Patients With Persistently Normal Alanine Aminotransferase and Detectable Viremia |
title_full_unstemmed | Development and Validation of a Non-invasive Model to Predict Liver Histological Lesions in Chronic Hepatitis B Patients With Persistently Normal Alanine Aminotransferase and Detectable Viremia |
title_short | Development and Validation of a Non-invasive Model to Predict Liver Histological Lesions in Chronic Hepatitis B Patients With Persistently Normal Alanine Aminotransferase and Detectable Viremia |
title_sort | development and validation of a non-invasive model to predict liver histological lesions in chronic hepatitis b patients with persistently normal alanine aminotransferase and detectable viremia |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326251/ https://www.ncbi.nlm.nih.gov/pubmed/35911415 http://dx.doi.org/10.3389/fmed.2022.944547 |
work_keys_str_mv | AT huqiankun developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT wangqianqian developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT xuwei developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT huangchenlu developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT taoshuai developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT qixun developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT zhangyi developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT lixinyan developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT jiangxuhua developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT songjie developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT liqiang developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT chenliang developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia AT huangyuxian developmentandvalidationofanoninvasivemodeltopredictliverhistologicallesionsinchronichepatitisbpatientswithpersistentlynormalalanineaminotransferaseanddetectableviremia |