Cargando…
A tool for federated training of segmentation models on whole slide images
The largest bottleneck to the development of convolutional neural network (CNN) models in the computational pathology domain is the collection and curation of diverse training datasets. Training CNNs requires large cohorts of image data, and model generalizability is dependent on training data heter...
Autores principales: | Lutnick, Brendon, Manthey, David, Becker, Jan U., Zuckerman, Jonathan E., Rodrigues, Luis, Jen, Kuang-Yu, Sarder, Pinaki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326476/ https://www.ncbi.nlm.nih.gov/pubmed/35910077 http://dx.doi.org/10.1016/j.jpi.2022.100101 |
Ejemplares similares
-
Histo-fetch – on-the-fly processing of gigapixel whole slide images simplifies and speeds neural network training
por: Lutnick, Brendon, et al.
Publicado: (2022) -
A user-friendly tool for cloud-based whole slide image segmentation with examples from renal histopathology
por: Lutnick, Brendon, et al.
Publicado: (2022) -
Standardization of whole slide image morphologic assessment with definition of a new application: Digital slide dynamic morphometry
por: Puppa, Giacomo, et al.
Publicado: (2011) -
Optimized JPEG 2000 Compression for Efficient Storage of Histopathological Whole-Slide Images
por: Helin, Henrik, et al.
Publicado: (2018) -
Cytopathology whole slide images and virtual microscopy adaptive tutorials: A software pilot
por: Van Es, Simone L., et al.
Publicado: (2015)