Cargando…

Noradrenergic Signaling in Astrocytes Influences Mammalian Sleep Homeostasis

Astrocytes influence sleep expression and regulation, but the cellular signaling pathways involved in these processes are poorly defined. We proposed that astrocytes detect and integrate a neuronal signal that accumulates during wakefulness, thereby leading to increased sleep drive. Noradrenaline (N...

Descripción completa

Detalles Bibliográficos
Autores principales: Ingiosi, Ashley M., Frank, Marcos G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326550/
https://www.ncbi.nlm.nih.gov/pubmed/35892990
http://dx.doi.org/10.3390/clockssleep4030028
Descripción
Sumario:Astrocytes influence sleep expression and regulation, but the cellular signaling pathways involved in these processes are poorly defined. We proposed that astrocytes detect and integrate a neuronal signal that accumulates during wakefulness, thereby leading to increased sleep drive. Noradrenaline (NA) satisfies several criteria for a waking signal integrated by astrocytes. We therefore investigated the role of NA signaling in astrocytes in mammalian sleep. We conditionally knocked out (cKO) β2-adrenergic receptors (β2-AR) selectively in astrocytes in mice and recorded electroencephalographic and electromyographic activity under baseline conditions and in response to sleep deprivation (SDep). cKO of astroglial β2-ARs increased active phase siesta duration under baseline conditions and reduced homeostatic compensatory changes in sleep consolidation and non-rapid eye movement slow-wave activity (SWA) after SDep. Overall, astroglial NA β2-ARs influence mammalian sleep homeostasis in a manner consistent with our proposed model of neuronal–astroglial interactions.