Cargando…
AI Denoising Improves Image Quality and Radiological Workflows in Pediatric Ultra-Low-Dose Thorax Computed Tomography Scans
(1) This study evaluates the impact of an AI denoising algorithm on image quality, diagnostic accuracy, and radiological workflows in pediatric chest ultra-low-dose CT (ULDCT). (2) Methods: 100 consecutive pediatric thorax ULDCT were included and reconstructed using weighted filtered back projection...
Autores principales: | Brendlin, Andreas S., Schmid, Ulrich, Plajer, David, Chaika, Maryanna, Mader, Markus, Wrazidlo, Robin, Männlin, Simon, Spogis, Jakob, Estler, Arne, Esser, Michael, Schäfer, Jürgen, Afat, Saif, Tsiflikas, Ilias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326759/ https://www.ncbi.nlm.nih.gov/pubmed/35894005 http://dx.doi.org/10.3390/tomography8040140 |
Ejemplares similares
-
AI Denoising Significantly Improves Image Quality in Whole-Body Low-Dose Computed Tomography Staging
por: Brendlin, Andreas S., et al.
Publicado: (2022) -
AI Denoising Significantly Enhances Image Quality and Diagnostic Confidence in Interventional Cone-Beam Computed Tomography
por: Brendlin, Andreas S., et al.
Publicado: (2022) -
Combined Metabolic and Functional Tumor Volumes on [(18)F]FDG-PET/MRI in Neuroblastoma Using Voxel-Wise Analysis
por: Chaika, Maryanna, et al.
Publicado: (2023) -
Clinical Evaluation of an Abbreviated Contrast-Enhanced Whole-Body MRI for Oncologic Follow-Up Imaging
por: Herrmann, Judith, et al.
Publicado: (2021) -
AI Lung Segmentation and Perfusion Analysis of Dual-Energy CT Can Help to Distinguish COVID-19 Infiltrates from Visually Similar Immunotherapy-Related Pneumonitis Findings and Can Optimize Radiological Workflows
por: Brendlin, Andreas S., et al.
Publicado: (2021)