Cargando…
The quantum theory of time: a calculus for q-numbers
In quantum theory, physical systems are usually assumed to evolve relative to a c-number time. This c-number time is unphysical and has turned out to be unnecessary for explaining dynamics: in the timeless approach to quantum theory developed by Page & Wootters 1983 Phys. Rev. D 27, 2885. (doi:1...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9326976/ https://www.ncbi.nlm.nih.gov/pubmed/35909420 http://dx.doi.org/10.1098/rspa.2021.0970 |
Sumario: | In quantum theory, physical systems are usually assumed to evolve relative to a c-number time. This c-number time is unphysical and has turned out to be unnecessary for explaining dynamics: in the timeless approach to quantum theory developed by Page & Wootters 1983 Phys. Rev. D 27, 2885. (doi:10.1103/PhysRevD.27.2885), subsystems of a stationary universe can instead evolve relative to a ‘clock', which is a quantum system with a q-number time observable. Page & Wootters formulated their construction in the Schrödinger picture, which left open the possibility that the c-number time still plays an explanatory role in the Heisenberg picture. I formulate their construction in the Heisenberg picture and demonstrate how to eliminate c-number time from that picture, too. When the Page–Wootters construction is formulated in the Heisenberg picture, the descriptors of physical systems are functions of the clock's q-number time, and derivatives with respect to this q-number time can be defined in terms of the clock's algebra of observables, which results in a calculus for q-numbers. |
---|