Cargando…

A novel brain-controlled wheelchair combined with computer vision and augmented reality

BACKGROUND: Brain-controlled wheelchairs (BCWs) are important applications of brain–computer interfaces (BCIs). Currently, most BCWs are semiautomatic. When users want to reach a target of interest in their immediate environment, this semiautomatic interaction strategy is slow. METHODS: To this end,...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Kaixuan, Yu, Yang, Liu, Yadong, Tang, Jingsheng, Liang, Xinbin, Chu, Xingxing, Zhou, Zongtan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9327337/
https://www.ncbi.nlm.nih.gov/pubmed/35883092
http://dx.doi.org/10.1186/s12938-022-01020-8
Descripción
Sumario:BACKGROUND: Brain-controlled wheelchairs (BCWs) are important applications of brain–computer interfaces (BCIs). Currently, most BCWs are semiautomatic. When users want to reach a target of interest in their immediate environment, this semiautomatic interaction strategy is slow. METHODS: To this end, we combined computer vision (CV) and augmented reality (AR) with a BCW and proposed the CVAR-BCW: a BCW with a novel automatic interaction strategy. The proposed CVAR-BCW uses a translucent head-mounted display (HMD) as the user interface, uses CV to automatically detect environments, and shows the detected targets through AR technology. Once a user has chosen a target, the CVAR-BCW can automatically navigate to it. For a few scenarios, the semiautomatic strategy might be useful. We integrated a semiautomatic interaction framework into the CVAR-BCW. The user can switch between the automatic and semiautomatic strategies. RESULTS: We recruited 20 non-disabled subjects for this study and used the accuracy, information transfer rate (ITR), and average time required for the CVAR-BCW to reach each designated target as performance metrics. The experimental results showed that our CVAR-BCW performed well in indoor environments: the average accuracies across all subjects were 83.6% (automatic) and 84.1% (semiautomatic), the average ITRs were 8.2 bits/min (automatic) and 8.3 bits/min (semiautomatic), the average times required to reach a target were 42.4 s (automatic) and 93.4 s (semiautomatic), and the average workloads and degrees of fatigue for the two strategies were both approximately 20. CONCLUSIONS: Our CVAR-BCW provides a user-centric interaction approach and a good framework for integrating more advanced artificial intelligence technologies, which may be useful in the field of disability assistance.