Cargando…
Predicting clinical outcomes in COVID-19 using radiomics on chest radiographs
OBJECTIVES: For optimal utilization of healthcare resources, there is a critical need for early identification of COVID-19 patients at risk of poor prognosis as defined by the need for intensive unit care and mechanical ventilation. We tested the feasibility of chest X-ray (CXR)-based radiomics metr...
Autores principales: | Varghese, Bino Abel, Shin, Heeseop, Desai, Bhushan, Gholamrezanezhad, Ali, Lei, Xiaomeng, Perkins, Melissa, Oberai, Assad, Nanda, Neha, Cen, Steven, Duddalwar, Vinay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328073/ https://www.ncbi.nlm.nih.gov/pubmed/34520246 http://dx.doi.org/10.1259/bjr.20210221 |
Ejemplares similares
-
Machine learning based predictors for COVID-19 disease severity
por: Patel, Dhruv, et al.
Publicado: (2021) -
Predicting Soft Tissue Sarcoma Response to Neoadjuvant Chemotherapy Using an MRI-Based Delta-Radiomics Approach
por: Fields, Brandon K. K., et al.
Publicado: (2023) -
Identification of robust and reproducible CT‐texture metrics using a customized 3D‐printed texture phantom
por: Varghese, Bino A., et al.
Publicado: (2021) -
Feasibility of using CT radiomic signatures for predicting CD8-T cell infiltration and PD-L1 expression in renal cell carcinoma
por: Varghese, Bino, et al.
Publicado: (2022) -
Responding to coronavirus disease 2019: LA County hospital experience
por: Shin, Heeseop, et al.
Publicado: (2020)