Cargando…

Water quality assessment in mosquito breeding habitats based on dissolved organic matter and chlorophyll measurements by laser-induced fluorescence spectroscopy

Rapid urbanization and its associated pollution can affect water quality in mosquito breeding habitats and, as a result, the ecology and control of mosquito vectors. To understand the effects of pollution on mosquito vectors, an accurate assessment of water quality in breeding habitats is needed. Pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Huzortey, Andrew A., Kudom, Andreas A., Mensah, Ben A., Sefa-Ntiri, Baah, Anderson, Benjamin, Akyea, Angela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328511/
https://www.ncbi.nlm.nih.gov/pubmed/35895685
http://dx.doi.org/10.1371/journal.pone.0252248
Descripción
Sumario:Rapid urbanization and its associated pollution can affect water quality in mosquito breeding habitats and, as a result, the ecology and control of mosquito vectors. To understand the effects of pollution on mosquito vectors, an accurate assessment of water quality in breeding habitats is needed. Presently, water quality assessment of mosquito breeding habitats is usually based on the measurement of individual physicochemical parameters. However, several parameters are sometimes difficult to interpret or may not give a clear picture of the overall water quality of the breeding habitats, especially when the pollutants are in complex mixtures. This study employed the use of Laser-Induced Fluorescence (LIF) spectroscopy to assess water quality in breeding habitats of Anopheles, Aedes, and Culex mosquitoes in urban areas in Cape Coast, Ghana. The LIF spectra, using a 445-nm diode laser, were measured from field-collected water samples in the laboratory. The LIF spectra showed the presence of dissolved organic matter (DOM) and chlorophyll in the breeding habitats. The DOM and chlorophyll fluorescence signals were normalised by the Raman vibrational signals to determine water quality in each habitat. The overall water quality was better in Aedes breeding habitats than in Anopheles and Culex breeding habitats. The poor water quality in Anopheles and Culex breeding habitats was due to the presence of high fulvic acid and chlorophyll content, which often reflect pollutants from anthropogenic sources. Anopheles and Aedes habitats were made up of mainly An. coluzzii and Ae. aegypti respectively while Culex species were identified to genus level. The results add up to the growing concern about the breeding of Anopheles in polluted habitats. The study demonstrated for the first time the ability of LIF spectroscopy to assess water quality in mosquito breeding habitats.