Cargando…
Simulation-Driven Machine Learning for Predicting Stent Expansion in Calcified Coronary Artery
In this work, we integrated finite element (FE) method and machine learning (ML) method to predict the stent expansion in a calcified coronary artery. The stenting procedure was captured in a patient-specific artery model, reconstructed based on optical coherence tomography images. Following FE simu...
Autores principales: | Dong, Pengfei, Ye, Guochang, Kaya, Mehmet, Gu, Linxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328568/ https://www.ncbi.nlm.nih.gov/pubmed/35903558 http://dx.doi.org/10.3390/app10175820 |
Ejemplares similares
-
Prediction of stent under-expansion in calcified coronary arteries using machine learning on intravascular optical coherence tomography images
por: Gharaibeh, Yazan, et al.
Publicado: (2023) -
Load-sharing characteristics of stenting and postdilation in heavily calcified coronary artery
por: Dong, Pengfei, et al.
Publicado: (2023) -
Load-sharing characteristics of stenting and post-dilation in heavily calcified coronary artery
por: Dong, Pengfei, et al.
Publicado: (2023) -
Intravascular Lithotripsy for Underexpanded Stent in Heavily Calcified Coronary Artery Disease
por: Raxwal, Tejas, et al.
Publicado: (2022) -
Rapid Prediction of Retina Stress and Strain Patterns in Soccer-Related Ocular Injury: Integrating Finite Element Analysis with Machine Learning Approach
por: Shokrollahi, Yasin, et al.
Publicado: (2022)