Cargando…
Explainable deep transfer learning model for disease risk prediction using high-dimensional genomic data
Building an accurate disease risk prediction model is an essential step in the modern quest for precision medicine. While high-dimensional genomic data provides valuable data resources for the investigations of disease risk, their huge amount of noise and complex relationships between predictors and...
Autores principales: | Liu, Long, Meng, Qingyu, Weng, Cherry, Lu, Qing, Wang, Tong, Wen, Yalu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328574/ https://www.ncbi.nlm.nih.gov/pubmed/35839250 http://dx.doi.org/10.1371/journal.pcbi.1010328 |
Ejemplares similares
-
A penalized linear mixed model with generalized method of moments for prediction analysis on high-dimensional multi-omics data
por: Wang, Xiaqiong, et al.
Publicado: (2022) -
Explaining the physics of transfer learning in data-driven turbulence modeling
por: Subel, Adam, et al.
Publicado: (2023) -
Bayesian linear mixed model with multiple random effects for prediction analysis on high-dimensional multi-omics data
por: Hai, Yang, et al.
Publicado: (2023) -
Explainable Deep Learning for Personalized Age Prediction With Brain Morphology
por: Lombardi, Angela, et al.
Publicado: (2021) -
Bayesian linear mixed model with multiple random effects for family-based genetic studies
por: Hai, Yang, et al.
Publicado: (2023)