Cargando…
Dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κB/Janus kinase/signal transducer and activator of transcription in virus-infected RAW264.7 cells
Recent investigations have demonstrated that carotenoid extract of Dunaliella salina alga (Alga) contains abundant β-carotene and has good anti-inflammatory activities. Murine macrophage (RAW264.7 cells) was used to establish as an in vitro model of pseudorabies virus-induced reactive oxygen species...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taiwan Food and Drug Administration
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328861/ https://www.ncbi.nlm.nih.gov/pubmed/28987368 http://dx.doi.org/10.1016/j.jfda.2016.11.018 |
_version_ | 1784757808950935552 |
---|---|
author | Lin, Hui-Wen Liu, Cheng-Wei Yang, Deng-Jye Chen, Ching-Chung Chen, Shih-Yin Tseng, Jung-Kai Chang, Tien-Jye Chang, Yuan-Yen |
author_facet | Lin, Hui-Wen Liu, Cheng-Wei Yang, Deng-Jye Chen, Ching-Chung Chen, Shih-Yin Tseng, Jung-Kai Chang, Tien-Jye Chang, Yuan-Yen |
author_sort | Lin, Hui-Wen |
collection | PubMed |
description | Recent investigations have demonstrated that carotenoid extract of Dunaliella salina alga (Alga) contains abundant β-carotene and has good anti-inflammatory activities. Murine macrophage (RAW264.7 cells) was used to establish as an in vitro model of pseudorabies virus-induced reactive oxygen species (ROS) response. In this study, antioxidant activities of Alga were measured based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, trolox equivalent antioxidant capacity assays, reducing power, and virus-induced ROS formation in RAW264.7 cells. Anti-inflammatory activities of Alga were assessed by its ability to inhibit the production of interleukin-6 and nitric oxide (NO) using enzyme-linked immunosorbent assay, then the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway was investigated by measuring the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (p50 and p65), JAK, STAT-1/3, and suppressor of cytokine signaling 3 (SOCS3) by Western blotting. In addition, Alga inhibited virus replication by plaque assay. Our results showed that the Alga had high antioxidant activity, significantly reduced the virus-induced accumulation of ROS, and inhibited the levels of nitric oxide and interleukin-6. Further studies revealed that Alga also downregulated the gene and protein expressions of iNOS, COX-2, nuclear factor-κB (p50 and p65), and the JAK/STAT pathway. The inhibitory effects of Alga were similar to pre-treatment with specific inhibitors of JAK and STAT-3 in pseudorabies virus-infected RAW264.7 cells. Alga enhanced the expression of SOCS3 to suppress the activity of the JAK/ STAT signaling pathway in pseudorabies virus-infected RAW264.7 cells. In addition, Alga has decreased viral replication (p < 0.005) at an early stage. Therefore, our results demonstrate that Alga inhibits ROS, interleukin6, and nitric oxide production via suppression of the JAK/STAT pathways and enhanced the expression of SOCS3 in virus-infected RAW264.7 cells. |
format | Online Article Text |
id | pubmed-9328861 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Taiwan Food and Drug Administration |
record_format | MEDLINE/PubMed |
spelling | pubmed-93288612022-08-09 Dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κB/Janus kinase/signal transducer and activator of transcription in virus-infected RAW264.7 cells Lin, Hui-Wen Liu, Cheng-Wei Yang, Deng-Jye Chen, Ching-Chung Chen, Shih-Yin Tseng, Jung-Kai Chang, Tien-Jye Chang, Yuan-Yen J Food Drug Anal Original Article Recent investigations have demonstrated that carotenoid extract of Dunaliella salina alga (Alga) contains abundant β-carotene and has good anti-inflammatory activities. Murine macrophage (RAW264.7 cells) was used to establish as an in vitro model of pseudorabies virus-induced reactive oxygen species (ROS) response. In this study, antioxidant activities of Alga were measured based on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, trolox equivalent antioxidant capacity assays, reducing power, and virus-induced ROS formation in RAW264.7 cells. Anti-inflammatory activities of Alga were assessed by its ability to inhibit the production of interleukin-6 and nitric oxide (NO) using enzyme-linked immunosorbent assay, then the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway was investigated by measuring the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), nuclear factor-κB (p50 and p65), JAK, STAT-1/3, and suppressor of cytokine signaling 3 (SOCS3) by Western blotting. In addition, Alga inhibited virus replication by plaque assay. Our results showed that the Alga had high antioxidant activity, significantly reduced the virus-induced accumulation of ROS, and inhibited the levels of nitric oxide and interleukin-6. Further studies revealed that Alga also downregulated the gene and protein expressions of iNOS, COX-2, nuclear factor-κB (p50 and p65), and the JAK/STAT pathway. The inhibitory effects of Alga were similar to pre-treatment with specific inhibitors of JAK and STAT-3 in pseudorabies virus-infected RAW264.7 cells. Alga enhanced the expression of SOCS3 to suppress the activity of the JAK/ STAT signaling pathway in pseudorabies virus-infected RAW264.7 cells. In addition, Alga has decreased viral replication (p < 0.005) at an early stage. Therefore, our results demonstrate that Alga inhibits ROS, interleukin6, and nitric oxide production via suppression of the JAK/STAT pathways and enhanced the expression of SOCS3 in virus-infected RAW264.7 cells. Taiwan Food and Drug Administration 2017-02-14 /pmc/articles/PMC9328861/ /pubmed/28987368 http://dx.doi.org/10.1016/j.jfda.2016.11.018 Text en © 2017 Taiwan Food and Drug Administration https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ). |
spellingShingle | Original Article Lin, Hui-Wen Liu, Cheng-Wei Yang, Deng-Jye Chen, Ching-Chung Chen, Shih-Yin Tseng, Jung-Kai Chang, Tien-Jye Chang, Yuan-Yen Dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κB/Janus kinase/signal transducer and activator of transcription in virus-infected RAW264.7 cells |
title | Dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κB/Janus kinase/signal transducer and activator of transcription in virus-infected RAW264.7 cells |
title_full | Dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κB/Janus kinase/signal transducer and activator of transcription in virus-infected RAW264.7 cells |
title_fullStr | Dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κB/Janus kinase/signal transducer and activator of transcription in virus-infected RAW264.7 cells |
title_full_unstemmed | Dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κB/Janus kinase/signal transducer and activator of transcription in virus-infected RAW264.7 cells |
title_short | Dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κB/Janus kinase/signal transducer and activator of transcription in virus-infected RAW264.7 cells |
title_sort | dunaliella salina alga extract inhibits the production of interleukin-6, nitric oxide, and reactive oxygen species by regulating nuclear factor-κb/janus kinase/signal transducer and activator of transcription in virus-infected raw264.7 cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328861/ https://www.ncbi.nlm.nih.gov/pubmed/28987368 http://dx.doi.org/10.1016/j.jfda.2016.11.018 |
work_keys_str_mv | AT linhuiwen dunaliellasalinaalgaextractinhibitstheproductionofinterleukin6nitricoxideandreactiveoxygenspeciesbyregulatingnuclearfactorkbjanuskinasesignaltransducerandactivatoroftranscriptioninvirusinfectedraw2647cells AT liuchengwei dunaliellasalinaalgaextractinhibitstheproductionofinterleukin6nitricoxideandreactiveoxygenspeciesbyregulatingnuclearfactorkbjanuskinasesignaltransducerandactivatoroftranscriptioninvirusinfectedraw2647cells AT yangdengjye dunaliellasalinaalgaextractinhibitstheproductionofinterleukin6nitricoxideandreactiveoxygenspeciesbyregulatingnuclearfactorkbjanuskinasesignaltransducerandactivatoroftranscriptioninvirusinfectedraw2647cells AT chenchingchung dunaliellasalinaalgaextractinhibitstheproductionofinterleukin6nitricoxideandreactiveoxygenspeciesbyregulatingnuclearfactorkbjanuskinasesignaltransducerandactivatoroftranscriptioninvirusinfectedraw2647cells AT chenshihyin dunaliellasalinaalgaextractinhibitstheproductionofinterleukin6nitricoxideandreactiveoxygenspeciesbyregulatingnuclearfactorkbjanuskinasesignaltransducerandactivatoroftranscriptioninvirusinfectedraw2647cells AT tsengjungkai dunaliellasalinaalgaextractinhibitstheproductionofinterleukin6nitricoxideandreactiveoxygenspeciesbyregulatingnuclearfactorkbjanuskinasesignaltransducerandactivatoroftranscriptioninvirusinfectedraw2647cells AT changtienjye dunaliellasalinaalgaextractinhibitstheproductionofinterleukin6nitricoxideandreactiveoxygenspeciesbyregulatingnuclearfactorkbjanuskinasesignaltransducerandactivatoroftranscriptioninvirusinfectedraw2647cells AT changyuanyen dunaliellasalinaalgaextractinhibitstheproductionofinterleukin6nitricoxideandreactiveoxygenspeciesbyregulatingnuclearfactorkbjanuskinasesignaltransducerandactivatoroftranscriptioninvirusinfectedraw2647cells |