Cargando…

Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals

Acetaminophen (APAP) induced inflammation and oxidative stress can cause cell death to induce liver damage. The antioxidative and anti-inflammatory effect of Mulberry (Morus australis) leaf extract (MLE) was shown in previous studies. In this study, we investigated the modulation of MLE on APAP indu...

Descripción completa

Detalles Bibliográficos
Autores principales: Horng, Chi-Ting, Liu, Zhi-Hong, Huang, Yu-Ting, Lee, Huei-Jane, Wang, Chau-Jong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taiwan Food and Drug Administration 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328886/
https://www.ncbi.nlm.nih.gov/pubmed/28987363
http://dx.doi.org/10.1016/j.jfda.2016.07.011
_version_ 1784757815124951040
author Horng, Chi-Ting
Liu, Zhi-Hong
Huang, Yu-Ting
Lee, Huei-Jane
Wang, Chau-Jong
author_facet Horng, Chi-Ting
Liu, Zhi-Hong
Huang, Yu-Ting
Lee, Huei-Jane
Wang, Chau-Jong
author_sort Horng, Chi-Ting
collection PubMed
description Acetaminophen (APAP) induced inflammation and oxidative stress can cause cell death to induce liver damage. The antioxidative and anti-inflammatory effect of Mulberry (Morus australis) leaf extract (MLE) was shown in previous studies. In this study, we investigated the modulation of MLE on APAP induced inflammation and oxidative stress in rat liver injury or liver cancer cell (HepG2). Wistar rat was fed orally with MLE (0.5% or 1.0 %) for 1 week, and then, 900 mg/kg of APAP was injected intraperitoneally (i.p.). Pretreatment of MLE decreased obvious foci of inflammatory cell infiltration in liver. It also reduced the expression of inflammatory parameters including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in liver. Treating with MLE increased the antioxidative enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase. Giving APAP to HepG2 hepatocyte was conducted to elucidate the mechanism of MLE or its functional components. The result showed that APAP upregulated hepatic protein expression of (myeloid differentiation factor 88) MyD88, nuclear factor kappa B (NF-kB), inhibitor of kappa B (IkB), c-Jun N-terminal kinases (JNK), and receptor interacting proteins (RIP1 and RIP3). Pretreatment of MLE, gallic acid (GA), gallocatechin gallate (GCG), or protocatechuic acid (PCA) suppressed the indicated protein expression. These findings confirmed that MLE has the potential to protect liver from APAP-induced inflammation, and the protecting mechanism might involve decreasing oxidative stress and regulating the innate immunity involving MyD88.
format Online
Article
Text
id pubmed-9328886
institution National Center for Biotechnology Information
language English
publishDate 2016
publisher Taiwan Food and Drug Administration
record_format MEDLINE/PubMed
spelling pubmed-93288862022-08-09 Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals Horng, Chi-Ting Liu, Zhi-Hong Huang, Yu-Ting Lee, Huei-Jane Wang, Chau-Jong J Food Drug Anal Original Article Acetaminophen (APAP) induced inflammation and oxidative stress can cause cell death to induce liver damage. The antioxidative and anti-inflammatory effect of Mulberry (Morus australis) leaf extract (MLE) was shown in previous studies. In this study, we investigated the modulation of MLE on APAP induced inflammation and oxidative stress in rat liver injury or liver cancer cell (HepG2). Wistar rat was fed orally with MLE (0.5% or 1.0 %) for 1 week, and then, 900 mg/kg of APAP was injected intraperitoneally (i.p.). Pretreatment of MLE decreased obvious foci of inflammatory cell infiltration in liver. It also reduced the expression of inflammatory parameters including cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in liver. Treating with MLE increased the antioxidative enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase. Giving APAP to HepG2 hepatocyte was conducted to elucidate the mechanism of MLE or its functional components. The result showed that APAP upregulated hepatic protein expression of (myeloid differentiation factor 88) MyD88, nuclear factor kappa B (NF-kB), inhibitor of kappa B (IkB), c-Jun N-terminal kinases (JNK), and receptor interacting proteins (RIP1 and RIP3). Pretreatment of MLE, gallic acid (GA), gallocatechin gallate (GCG), or protocatechuic acid (PCA) suppressed the indicated protein expression. These findings confirmed that MLE has the potential to protect liver from APAP-induced inflammation, and the protecting mechanism might involve decreasing oxidative stress and regulating the innate immunity involving MyD88. Taiwan Food and Drug Administration 2016-11-05 /pmc/articles/PMC9328886/ /pubmed/28987363 http://dx.doi.org/10.1016/j.jfda.2016.07.011 Text en © 2017 Taiwan Food and Drug Administration https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC-BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Original Article
Horng, Chi-Ting
Liu, Zhi-Hong
Huang, Yu-Ting
Lee, Huei-Jane
Wang, Chau-Jong
Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals
title Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals
title_full Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals
title_fullStr Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals
title_full_unstemmed Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals
title_short Extract from Mulberry (Morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (MyD88) signals
title_sort extract from mulberry (morus australis) leaf decelerate acetaminophen induced hepatic inflammation involving downregulation of myeloid differentiation factor 88 (myd88) signals
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9328886/
https://www.ncbi.nlm.nih.gov/pubmed/28987363
http://dx.doi.org/10.1016/j.jfda.2016.07.011
work_keys_str_mv AT horngchiting extractfrommulberrymorusaustralisleafdecelerateacetaminopheninducedhepaticinflammationinvolvingdownregulationofmyeloiddifferentiationfactor88myd88signals
AT liuzhihong extractfrommulberrymorusaustralisleafdecelerateacetaminopheninducedhepaticinflammationinvolvingdownregulationofmyeloiddifferentiationfactor88myd88signals
AT huangyuting extractfrommulberrymorusaustralisleafdecelerateacetaminopheninducedhepaticinflammationinvolvingdownregulationofmyeloiddifferentiationfactor88myd88signals
AT leehueijane extractfrommulberrymorusaustralisleafdecelerateacetaminopheninducedhepaticinflammationinvolvingdownregulationofmyeloiddifferentiationfactor88myd88signals
AT wangchaujong extractfrommulberrymorusaustralisleafdecelerateacetaminopheninducedhepaticinflammationinvolvingdownregulationofmyeloiddifferentiationfactor88myd88signals