Cargando…
Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models
Chronic diseases are the most severe health concern today, and heart disease is one of them. Coronary artery disease (CAD) affects blood flow to the heart, and it is the most common type of heart disease which causes a heart attack. High blood pressure, high cholesterol, and smoking significantly in...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329013/ https://www.ncbi.nlm.nih.gov/pubmed/35909858 http://dx.doi.org/10.1155/2022/5882144 |
_version_ | 1784757846235152384 |
---|---|
author | Kumar, Krishna Kumar, Narendra Kumar, Aman Mohammed, Mazin Abed Al-Waisy, Alaa S. Jaber, Mustafa Musa Pandey, Neeraj Kumar Shah, Rachna Saini, Gaurav Eid, Fatma Al-Andoli, Mohammed Nasser |
author_facet | Kumar, Krishna Kumar, Narendra Kumar, Aman Mohammed, Mazin Abed Al-Waisy, Alaa S. Jaber, Mustafa Musa Pandey, Neeraj Kumar Shah, Rachna Saini, Gaurav Eid, Fatma Al-Andoli, Mohammed Nasser |
author_sort | Kumar, Krishna |
collection | PubMed |
description | Chronic diseases are the most severe health concern today, and heart disease is one of them. Coronary artery disease (CAD) affects blood flow to the heart, and it is the most common type of heart disease which causes a heart attack. High blood pressure, high cholesterol, and smoking significantly increase the risk of heart disease. To estimate the risk of heart disease is a complex process because it depends on various input parameters. The linear and analytical models failed due to their assumptions and limited dataset. The existing studies have used medical data for classification purposes, which help to identify the exact condition of the patient, but no one has developed any correlation equation which can be directly used to identify the patients. In this paper, mathematical models have been developed using the medical database of patients suffering from heart disease. Curve fitting and artificial neural network (ANN) have been applied to model the condition of patients to find out whether the patient is suffering from heart disease or not. The developed curve fitting model can identify the cardiac patient with accuracy, having a coefficient of determination (R(2)-value) of 0.6337 and mean absolute error (MAE) of 0.293 at a root mean square error (RMSE) of 0.3688, and the ANN-based model can identify the cardiac patient with accuracy having a coefficient of determination (R(2)-value) of 0.8491 and MAE of 0.20 at RMSE of 0.267, it has been found that ANN provides superior mathematical modeling than curve fitting method in identifying the heart disease patients. Medical professionals can utilize this model to identify heart patients without any angiography or computed tomography angiography test. |
format | Online Article Text |
id | pubmed-9329013 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-93290132022-07-28 Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models Kumar, Krishna Kumar, Narendra Kumar, Aman Mohammed, Mazin Abed Al-Waisy, Alaa S. Jaber, Mustafa Musa Pandey, Neeraj Kumar Shah, Rachna Saini, Gaurav Eid, Fatma Al-Andoli, Mohammed Nasser Comput Intell Neurosci Research Article Chronic diseases are the most severe health concern today, and heart disease is one of them. Coronary artery disease (CAD) affects blood flow to the heart, and it is the most common type of heart disease which causes a heart attack. High blood pressure, high cholesterol, and smoking significantly increase the risk of heart disease. To estimate the risk of heart disease is a complex process because it depends on various input parameters. The linear and analytical models failed due to their assumptions and limited dataset. The existing studies have used medical data for classification purposes, which help to identify the exact condition of the patient, but no one has developed any correlation equation which can be directly used to identify the patients. In this paper, mathematical models have been developed using the medical database of patients suffering from heart disease. Curve fitting and artificial neural network (ANN) have been applied to model the condition of patients to find out whether the patient is suffering from heart disease or not. The developed curve fitting model can identify the cardiac patient with accuracy, having a coefficient of determination (R(2)-value) of 0.6337 and mean absolute error (MAE) of 0.293 at a root mean square error (RMSE) of 0.3688, and the ANN-based model can identify the cardiac patient with accuracy having a coefficient of determination (R(2)-value) of 0.8491 and MAE of 0.20 at RMSE of 0.267, it has been found that ANN provides superior mathematical modeling than curve fitting method in identifying the heart disease patients. Medical professionals can utilize this model to identify heart patients without any angiography or computed tomography angiography test. Hindawi 2022-07-20 /pmc/articles/PMC9329013/ /pubmed/35909858 http://dx.doi.org/10.1155/2022/5882144 Text en Copyright © 2022 Krishna Kumar et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Kumar, Krishna Kumar, Narendra Kumar, Aman Mohammed, Mazin Abed Al-Waisy, Alaa S. Jaber, Mustafa Musa Pandey, Neeraj Kumar Shah, Rachna Saini, Gaurav Eid, Fatma Al-Andoli, Mohammed Nasser Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models |
title | Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models |
title_full | Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models |
title_fullStr | Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models |
title_full_unstemmed | Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models |
title_short | Identification of Cardiac Patients Based on the Medical Conditions Using Machine Learning Models |
title_sort | identification of cardiac patients based on the medical conditions using machine learning models |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329013/ https://www.ncbi.nlm.nih.gov/pubmed/35909858 http://dx.doi.org/10.1155/2022/5882144 |
work_keys_str_mv | AT kumarkrishna identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels AT kumarnarendra identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels AT kumaraman identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels AT mohammedmazinabed identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels AT alwaisyalaas identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels AT jabermustafamusa identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels AT pandeyneerajkumar identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels AT shahrachna identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels AT sainigaurav identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels AT eidfatma identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels AT alandolimohammednasser identificationofcardiacpatientsbasedonthemedicalconditionsusingmachinelearningmodels |