Cargando…
Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice
Sickle cell disease (SCD) is associated with repeated bouts of vascular insufficiency leading to organ dysfunction. Deficits in revascularization following vascular injury are evident in SCD patients and animal models. We aimed to elucidate whether enhancing nitric oxide bioavailability in SCD mice...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329194/ https://www.ncbi.nlm.nih.gov/pubmed/35354915 http://dx.doi.org/10.1038/s41374-022-00780-0 |
_version_ | 1784757880783634432 |
---|---|
author | Lewis, Caitlin V Sellak, Hassan Hansen, Laura Joseph, Giji Hurtado, Julian Archer, David R Jun, Ho-Wook Brown, Lou Ann Taylor, W. Robert |
author_facet | Lewis, Caitlin V Sellak, Hassan Hansen, Laura Joseph, Giji Hurtado, Julian Archer, David R Jun, Ho-Wook Brown, Lou Ann Taylor, W. Robert |
author_sort | Lewis, Caitlin V |
collection | PubMed |
description | Sickle cell disease (SCD) is associated with repeated bouts of vascular insufficiency leading to organ dysfunction. Deficits in revascularization following vascular injury are evident in SCD patients and animal models. We aimed to elucidate whether enhancing nitric oxide bioavailability in SCD mice improves outcomes in a model of vascular insufficiency. Townes AA (wild type) and SS (sickle cell) mice were treated with either L-Arginine (5% in drinking water), L-NAME (N(ω)-nitro-L-arginine methyl ester; 1 g/L in drinking water) or NO-generating hydrogel (PA-YK-NO), then subjected to hindlimb ischemia via femoral artery ligation and excision. Perfusion recovery was monitored over 28 days via LASER Doppler perfusion imaging. Consistent with previous findings, perfusion was impaired in SS mice (63±4% of non-ischemic limb perfusion in AA vs 33±3% in SS; day 28; P<0.001; n=5–7) and associated with increased necrosis. L-Arginine treatment had no significant effect on perfusion recovery or necrosis (n=5–7). PA-YK-NO treatment led to worsened perfusion recovery (19±3 vs 32±3 in vehicle-treated mice; day 7; P<0.05; n=4–5), increased necrosis score (P<0.05, n=4–5) and a 46% increase in hindlimb peroxynitrite (P=0.055, n=4–5). Interestingly, L-NAME worsened outcomes in SS mice with decreased in vivo lectin staining following ischemia (7±2% area in untreated vs 4±2% in treated mice, P<0.05, n=5). Our findings demonstrate that L-arginine and direct NO delivery both fail to improve postischemic neovascularization in SCD. Addition of NO to the inflammatory, oxidative environment in SCD may result in further oxidative stress and limit recovery. |
format | Online Article Text |
id | pubmed-9329194 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-93291942022-09-30 Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice Lewis, Caitlin V Sellak, Hassan Hansen, Laura Joseph, Giji Hurtado, Julian Archer, David R Jun, Ho-Wook Brown, Lou Ann Taylor, W. Robert Lab Invest Article Sickle cell disease (SCD) is associated with repeated bouts of vascular insufficiency leading to organ dysfunction. Deficits in revascularization following vascular injury are evident in SCD patients and animal models. We aimed to elucidate whether enhancing nitric oxide bioavailability in SCD mice improves outcomes in a model of vascular insufficiency. Townes AA (wild type) and SS (sickle cell) mice were treated with either L-Arginine (5% in drinking water), L-NAME (N(ω)-nitro-L-arginine methyl ester; 1 g/L in drinking water) or NO-generating hydrogel (PA-YK-NO), then subjected to hindlimb ischemia via femoral artery ligation and excision. Perfusion recovery was monitored over 28 days via LASER Doppler perfusion imaging. Consistent with previous findings, perfusion was impaired in SS mice (63±4% of non-ischemic limb perfusion in AA vs 33±3% in SS; day 28; P<0.001; n=5–7) and associated with increased necrosis. L-Arginine treatment had no significant effect on perfusion recovery or necrosis (n=5–7). PA-YK-NO treatment led to worsened perfusion recovery (19±3 vs 32±3 in vehicle-treated mice; day 7; P<0.05; n=4–5), increased necrosis score (P<0.05, n=4–5) and a 46% increase in hindlimb peroxynitrite (P=0.055, n=4–5). Interestingly, L-NAME worsened outcomes in SS mice with decreased in vivo lectin staining following ischemia (7±2% area in untreated vs 4±2% in treated mice, P<0.05, n=5). Our findings demonstrate that L-arginine and direct NO delivery both fail to improve postischemic neovascularization in SCD. Addition of NO to the inflammatory, oxidative environment in SCD may result in further oxidative stress and limit recovery. 2022-08 2022-03-30 /pmc/articles/PMC9329194/ /pubmed/35354915 http://dx.doi.org/10.1038/s41374-022-00780-0 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
spellingShingle | Article Lewis, Caitlin V Sellak, Hassan Hansen, Laura Joseph, Giji Hurtado, Julian Archer, David R Jun, Ho-Wook Brown, Lou Ann Taylor, W. Robert Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice |
title | Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice |
title_full | Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice |
title_fullStr | Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice |
title_full_unstemmed | Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice |
title_short | Increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice |
title_sort | increasing nitric oxide bioavailability fails to improve collateral vessel formation in humanized sickle cell mice |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329194/ https://www.ncbi.nlm.nih.gov/pubmed/35354915 http://dx.doi.org/10.1038/s41374-022-00780-0 |
work_keys_str_mv | AT lewiscaitlinv increasingnitricoxidebioavailabilityfailstoimprovecollateralvesselformationinhumanizedsicklecellmice AT sellakhassan increasingnitricoxidebioavailabilityfailstoimprovecollateralvesselformationinhumanizedsicklecellmice AT hansenlaura increasingnitricoxidebioavailabilityfailstoimprovecollateralvesselformationinhumanizedsicklecellmice AT josephgiji increasingnitricoxidebioavailabilityfailstoimprovecollateralvesselformationinhumanizedsicklecellmice AT hurtadojulian increasingnitricoxidebioavailabilityfailstoimprovecollateralvesselformationinhumanizedsicklecellmice AT archerdavidr increasingnitricoxidebioavailabilityfailstoimprovecollateralvesselformationinhumanizedsicklecellmice AT junhowook increasingnitricoxidebioavailabilityfailstoimprovecollateralvesselformationinhumanizedsicklecellmice AT brownlouann increasingnitricoxidebioavailabilityfailstoimprovecollateralvesselformationinhumanizedsicklecellmice AT taylorwrobert increasingnitricoxidebioavailabilityfailstoimprovecollateralvesselformationinhumanizedsicklecellmice |