Cargando…

Sustainable oxygen evolution electrocatalysis in aqueous 1 M H(2)SO(4) with earth abundant nanostructured Co(3)O(4)

Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) able to work in acidic working conditions are elusive. While many first-row transition metal oxides are competitive in alkaline media, most of them just dissolve or become inactive at high proton concentrations where hydrogen ev...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Jiahao, Garcés-Pineda, Felipe A., González-Cobos, Jesús, Peña-Díaz, Marina, Rogero, Celia, Giménez, Sixto, Spadaro, Maria Chiara, Arbiol, Jordi, Barja, Sara, Galán-Mascarós, José Ramón
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329283/
https://www.ncbi.nlm.nih.gov/pubmed/35896541
http://dx.doi.org/10.1038/s41467-022-32024-6
_version_ 1784757885981425664
author Yu, Jiahao
Garcés-Pineda, Felipe A.
González-Cobos, Jesús
Peña-Díaz, Marina
Rogero, Celia
Giménez, Sixto
Spadaro, Maria Chiara
Arbiol, Jordi
Barja, Sara
Galán-Mascarós, José Ramón
author_facet Yu, Jiahao
Garcés-Pineda, Felipe A.
González-Cobos, Jesús
Peña-Díaz, Marina
Rogero, Celia
Giménez, Sixto
Spadaro, Maria Chiara
Arbiol, Jordi
Barja, Sara
Galán-Mascarós, José Ramón
author_sort Yu, Jiahao
collection PubMed
description Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) able to work in acidic working conditions are elusive. While many first-row transition metal oxides are competitive in alkaline media, most of them just dissolve or become inactive at high proton concentrations where hydrogen evolution is preferred. Only noble-metal catalysts, such as IrO(2), are fast and stable enough in acidic media. Herein, we report the excellent activity and long-term stability of Co(3)O(4)-based anodes in 1 M H(2)SO(4) (pH 0.1) when processed in a partially hydrophobic carbon-based protecting matrix. These Co(3)O(4)@C composites reliably drive O(2) evolution a 10 mA cm(–2) current density for >40 h without appearance of performance fatigue, successfully passing benchmarking protocols without incorporating noble metals. Our strategy opens an alternative venue towards fast, energy efficient acid-media water oxidation electrodes.
format Online
Article
Text
id pubmed-9329283
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-93292832022-07-29 Sustainable oxygen evolution electrocatalysis in aqueous 1 M H(2)SO(4) with earth abundant nanostructured Co(3)O(4) Yu, Jiahao Garcés-Pineda, Felipe A. González-Cobos, Jesús Peña-Díaz, Marina Rogero, Celia Giménez, Sixto Spadaro, Maria Chiara Arbiol, Jordi Barja, Sara Galán-Mascarós, José Ramón Nat Commun Article Earth-abundant electrocatalysts for the oxygen evolution reaction (OER) able to work in acidic working conditions are elusive. While many first-row transition metal oxides are competitive in alkaline media, most of them just dissolve or become inactive at high proton concentrations where hydrogen evolution is preferred. Only noble-metal catalysts, such as IrO(2), are fast and stable enough in acidic media. Herein, we report the excellent activity and long-term stability of Co(3)O(4)-based anodes in 1 M H(2)SO(4) (pH 0.1) when processed in a partially hydrophobic carbon-based protecting matrix. These Co(3)O(4)@C composites reliably drive O(2) evolution a 10 mA cm(–2) current density for >40 h without appearance of performance fatigue, successfully passing benchmarking protocols without incorporating noble metals. Our strategy opens an alternative venue towards fast, energy efficient acid-media water oxidation electrodes. Nature Publishing Group UK 2022-07-27 /pmc/articles/PMC9329283/ /pubmed/35896541 http://dx.doi.org/10.1038/s41467-022-32024-6 Text en © The Author(s) 2022, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Yu, Jiahao
Garcés-Pineda, Felipe A.
González-Cobos, Jesús
Peña-Díaz, Marina
Rogero, Celia
Giménez, Sixto
Spadaro, Maria Chiara
Arbiol, Jordi
Barja, Sara
Galán-Mascarós, José Ramón
Sustainable oxygen evolution electrocatalysis in aqueous 1 M H(2)SO(4) with earth abundant nanostructured Co(3)O(4)
title Sustainable oxygen evolution electrocatalysis in aqueous 1 M H(2)SO(4) with earth abundant nanostructured Co(3)O(4)
title_full Sustainable oxygen evolution electrocatalysis in aqueous 1 M H(2)SO(4) with earth abundant nanostructured Co(3)O(4)
title_fullStr Sustainable oxygen evolution electrocatalysis in aqueous 1 M H(2)SO(4) with earth abundant nanostructured Co(3)O(4)
title_full_unstemmed Sustainable oxygen evolution electrocatalysis in aqueous 1 M H(2)SO(4) with earth abundant nanostructured Co(3)O(4)
title_short Sustainable oxygen evolution electrocatalysis in aqueous 1 M H(2)SO(4) with earth abundant nanostructured Co(3)O(4)
title_sort sustainable oxygen evolution electrocatalysis in aqueous 1 m h(2)so(4) with earth abundant nanostructured co(3)o(4)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329283/
https://www.ncbi.nlm.nih.gov/pubmed/35896541
http://dx.doi.org/10.1038/s41467-022-32024-6
work_keys_str_mv AT yujiahao sustainableoxygenevolutionelectrocatalysisinaqueous1mh2so4withearthabundantnanostructuredco3o4
AT garcespinedafelipea sustainableoxygenevolutionelectrocatalysisinaqueous1mh2so4withearthabundantnanostructuredco3o4
AT gonzalezcobosjesus sustainableoxygenevolutionelectrocatalysisinaqueous1mh2so4withearthabundantnanostructuredco3o4
AT penadiazmarina sustainableoxygenevolutionelectrocatalysisinaqueous1mh2so4withearthabundantnanostructuredco3o4
AT rogerocelia sustainableoxygenevolutionelectrocatalysisinaqueous1mh2so4withearthabundantnanostructuredco3o4
AT gimenezsixto sustainableoxygenevolutionelectrocatalysisinaqueous1mh2so4withearthabundantnanostructuredco3o4
AT spadaromariachiara sustainableoxygenevolutionelectrocatalysisinaqueous1mh2so4withearthabundantnanostructuredco3o4
AT arbioljordi sustainableoxygenevolutionelectrocatalysisinaqueous1mh2so4withearthabundantnanostructuredco3o4
AT barjasara sustainableoxygenevolutionelectrocatalysisinaqueous1mh2so4withearthabundantnanostructuredco3o4
AT galanmascarosjoseramon sustainableoxygenevolutionelectrocatalysisinaqueous1mh2so4withearthabundantnanostructuredco3o4