Cargando…
Spin-flip-driven reversal of the angle-dependent magnetic torque in layered antiferromagnetic Ca(0.9)Sr(0.1)Co(2)As(2)
Spin-flip transition can occur in antiferromagnets with strong magnetocrystalline anisotropy, inducing a significant modification of the anisotropic magnetic properties through phase conversion. In contrast to ferromagnets, antiferromagnets have not been thoroughly examined in terms of their anisotr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329288/ https://www.ncbi.nlm.nih.gov/pubmed/35896804 http://dx.doi.org/10.1038/s41598-022-17206-y |
Sumario: | Spin-flip transition can occur in antiferromagnets with strong magnetocrystalline anisotropy, inducing a significant modification of the anisotropic magnetic properties through phase conversion. In contrast to ferromagnets, antiferromagnets have not been thoroughly examined in terms of their anisotropic characteristics. We investigated the magnetic-field and angle-dependent magnetic properties of Ising-type antiferromagnetic Ca(0.9)Sr(0.1)Co(2)As(2) using magnetic torque measurements. An A-type antiferromagnetic order emerges below T(N) = 97 K aligned along the magnetically easy c-axis. The reversal of the angle-dependent torque across the spin-flip transition was observed, revealing the strong influence of the magnetocrystalline anisotropy on the magnetic properties. Based on the easy-axis anisotropic spin model, we theoretically generated torque data and identified specific spin configurations associated with the magnetic torque variation in the presence of a rotating magnetic field. Our results enrich fundamental and applied research on diverse antiferromagnetic compounds by shedding new light on the distinct magnetic features of the Ising-type antiferromagnet. |
---|