Cargando…
A high mobility air-stable n-type organic small molecule semiconductor with high UV–visible-to-NIR photoresponse
An organic semiconductor with high carrier mobility and efficient light absorption over a wide spectral range is of the most important yet challenging material for constructing a broadband responsive organic photodetector. However, the development of such organic semiconductors, especially for air-s...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329299/ https://www.ncbi.nlm.nih.gov/pubmed/35896540 http://dx.doi.org/10.1038/s41377-022-00936-z |
Sumario: | An organic semiconductor with high carrier mobility and efficient light absorption over a wide spectral range is of the most important yet challenging material for constructing a broadband responsive organic photodetector. However, the development of such organic semiconductors, especially for air-stable n-type organic small molecule semiconductors, is still at an early stage. Here we report the fabrication of high-performance n-type semiconducting crystalline nanosheets and the development of air-stable field-effect transistors, phototransistors, with high response over a broad spectrum. The n-type small molecule semiconductor is assembled into a crystalline nanosheet based on the solvent-phase interfacial self-assembly method. N-type field-effect transistors with high electron mobility are fabricated and their electrical performances exhibit excellent air stability. Impressively, the demonstrated phototransistors exhibit an ultrahigh responsivity over a wide spectral range from 365 to 940 nm, with a maximum photoresponsivity of 9.2 × 10(5) A W(−1) and specific detectivity of 5.26 × 10(13) Jones, which is the best performance among the reported n-type organic small molecule-based phototransistors. |
---|