Cargando…
Deep multi-modal learning for joint linear representation of nonlinear dynamical systems
Dynamical systems pervasively seen in most real-life applications are complex and behave by following certain evolution rules or dynamical patterns, which are linear, non-linear, or stochastic. The underlying dynamics (or evolution rule) of such complex systems, if found, can be used for understandi...
Autores principales: | Qian, Shaodi, Chou, Chun-An, Li, Jr-Shin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329370/ https://www.ncbi.nlm.nih.gov/pubmed/35896569 http://dx.doi.org/10.1038/s41598-022-15669-7 |
Ejemplares similares
-
Deep learning for universal linear embeddings of nonlinear dynamics
por: Lusch, Bethany, et al.
Publicado: (2018) -
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
por: Brunton, Steven L., et al.
Publicado: (2016) -
DeepMPF: deep learning framework for predicting drug–target interactions based on multi-modal representation with meta-path semantic analysis
por: Ren, Zhong-Hao, et al.
Publicado: (2023) -
Hybrid DAER Based Cross-Modal Retrieval Exploiting Deep Representation Learning
por: Huang, Zhao, et al.
Publicado: (2023) -
Multi-Modal Song Mood Detection with Deep Learning †
por: Pyrovolakis, Konstantinos, et al.
Publicado: (2022)