Cargando…
Less is more: dimensionality reduction as a general strategy for more precise luminescence thermometry
Thermal resolution (also referred to as temperature uncertainty) establishes the minimum discernible temperature change sensed by luminescent thermometers and is a key figure of merit to rank them. Much has been done to minimize its value via probe optimization and correction of readout artifacts, b...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329371/ https://www.ncbi.nlm.nih.gov/pubmed/35896538 http://dx.doi.org/10.1038/s41377-022-00932-3 |
Sumario: | Thermal resolution (also referred to as temperature uncertainty) establishes the minimum discernible temperature change sensed by luminescent thermometers and is a key figure of merit to rank them. Much has been done to minimize its value via probe optimization and correction of readout artifacts, but little effort was put into a better exploitation of calibration datasets. In this context, this work aims at providing a new perspective on the definition of luminescence-based thermometric parameters using dimensionality reduction techniques that emerged in the last years. The application of linear (Principal Component Analysis) and non-linear (t-distributed Stochastic Neighbor Embedding) transformations to the calibration datasets obtained from rare-earth nanoparticles and semiconductor nanocrystals resulted in an improvement in thermal resolution compared to the more classical intensity-based and ratiometric approaches. This, in turn, enabled precise monitoring of temperature changes smaller than 0.1 °C. The methods here presented allow choosing superior thermometric parameters compared to the more classical ones, pushing the performance of luminescent thermometers close to the experimentally achievable limits. |
---|