Cargando…
Analysis of the Relationship Between Motor Imagery and Age-Related Fatigue for CNN Classification of the EEG Data
BACKGROUND: The aging of the world population poses a major health challenge, and brain–computer interface (BCI) technology has the potential to provide assistance and rehabilitation for the elderly. OBJECTIVES: This study aimed to investigate the electroencephalogram (EEG) characteristics during mo...
Autores principales: | Li, Xiangyun, Chen, Peng, Yu, Xi, Jiang, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329804/ https://www.ncbi.nlm.nih.gov/pubmed/35912081 http://dx.doi.org/10.3389/fnagi.2022.909571 |
Ejemplares similares
-
Parallel Spatial–Temporal Self-Attention CNN-Based Motor Imagery Classification for BCI
por: Liu, Xiuling, et al.
Publicado: (2020) -
Advanced aging effects on implicit motor imagery and its links to motor performance: An investigation via mental rotation of letters, hands, and feet
por: Muto, Hiroyuki, et al.
Publicado: (2022) -
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
Data Augmentation: Using Channel-Level Recombination to Improve Classification Performance for Motor Imagery EEG
por: Pei, Yu, et al.
Publicado: (2021) -
Early-stage fusion of EEG and fNIRS improves classification of motor imagery
por: Li, Yang, et al.
Publicado: (2023)