Cargando…

Synthesis and Biological Studies of Novel Aminophosphonates and Their Metal Carbonyl Complexes (Fe, Ru)

The quest to find new inhibitors of biologically relevant targets is considered an important strategy to introduce new drug candidates for the treatment of neurodegenerative diseases. A series of (aminomethyl)benzylphosphonates 8a–c and their metallocarbonyl iron 9a–c and ruthenium 10a–c complexes w...

Descripción completa

Detalles Bibliográficos
Autores principales: Kosińska, Aneta, Virieux, David, Pirat, Jean-Luc, Czarnecka, Kamila, Girek, Małgorzata, Szymański, Paweł, Wojtulewski, Sławomir, Vasudevan, Saranya, Chworos, Arkadiusz, Rudolf, Bogna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330042/
https://www.ncbi.nlm.nih.gov/pubmed/35897660
http://dx.doi.org/10.3390/ijms23158091
Descripción
Sumario:The quest to find new inhibitors of biologically relevant targets is considered an important strategy to introduce new drug candidates for the treatment of neurodegenerative diseases. A series of (aminomethyl)benzylphosphonates 8a–c and their metallocarbonyl iron 9a–c and ruthenium 10a–c complexes were designed, synthesized, and evaluated for their inhibitory potentials against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) by determination of IC(50). Metallocarbonyl derivatives, in general, did not show significant inhibition activity against these enzymes, the most potent inhibitor was the (aminomethyl)benzylphosphonate 8a (IC(50) = 1.215 µM against AChE). Molecular docking analysis of AChE and (aminomethyl)benzylphosphonates 8a–c showed the strongest interactions of 8a and AChE compared to isomers 8b and 8c. Cytotoxicity studies of synthesized compounds towards the V79 cell line were also performed and discussed.