Cargando…
Comprehensive Evaluation and Comparison of Machine Learning Methods in QSAR Modeling of Antioxidant Tripeptides
[Image: see text] Due to their multiple beneficial effects, antioxidant peptides have attracted increasing interest. Currently, the screening and identification of bioactive peptides, including antioxidative peptides based on wet-chemistry methods are time-consuming and highly rely on many advanced...
Autores principales: | Du, Zhenjiao, Wang, Donghai, Li, Yonghui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330208/ https://www.ncbi.nlm.nih.gov/pubmed/35910147 http://dx.doi.org/10.1021/acsomega.2c03062 |
Ejemplares similares
-
QSAR Study on Antioxidant Tripeptides and the Antioxidant Activity of the Designed Tripeptides in Free Radical Systems
por: Chen, Nan, et al.
Publicado: (2018) -
Comparison of various methods for validity evaluation of QSAR models
por: Shayanfar, Shadi, et al.
Publicado: (2022) -
Comparison of free‐energy methods using a tripeptide‐water model system
por: Maurer, Manuela, et al.
Publicado: (2018) -
Integration of machine learning in 3D-QSAR CoMSIA models for the identification of lipid antioxidant peptides
por: Nha Tran, Thi Thanh, et al.
Publicado: (2023) -
Beyond Tripeptides Two-Step Active Machine Learning
for Very Large Data sets
por: van Teijlingen, Alexander, et al.
Publicado: (2021)