Cargando…
Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite
Cardiovascular diseases are considered one of the leading causes of premature mortality of patients worldwide. Therefore, rapid diagnosis of these diseases is crucial to ensure the patient’s survival. During a heart attack or severe muscle damage, myoglobin is rapidly released in the body to constit...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330231/ https://www.ncbi.nlm.nih.gov/pubmed/35897951 http://dx.doi.org/10.3390/molecules27154778 |
_version_ | 1784758112438190080 |
---|---|
author | Lima, Fernanda M. R. de Menezes, Alan S. Maciel, Adeilton P. Sinfrônio, Francisco S. M. Kubota, Lauro T. Damos, Flávio S. Luz, Rita C. S. |
author_facet | Lima, Fernanda M. R. de Menezes, Alan S. Maciel, Adeilton P. Sinfrônio, Francisco S. M. Kubota, Lauro T. Damos, Flávio S. Luz, Rita C. S. |
author_sort | Lima, Fernanda M. R. |
collection | PubMed |
description | Cardiovascular diseases are considered one of the leading causes of premature mortality of patients worldwide. Therefore, rapid diagnosis of these diseases is crucial to ensure the patient’s survival. During a heart attack or severe muscle damage, myoglobin is rapidly released in the body to constitute itself as a precise biomarker of acute myocardial infarction. Thus, we described the photoelectrochemical immunosensor development to detect myoglobin. It was based on fluorine-doped tin oxide modified with CdSeS/ZnSe quantum dots and barium titanate (BTO), designated as CdSeS/ZnSQDS/BTO. It was characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and amperometry. The anodic photocurrent at the potential of 0 V (vs. Ag/AgCl) and pH 7.4 was found linearly related to the myoglobin (Mb) concentration from 0.01 to 1000 ng mL(−1). Furthermore, the immunosensor showed an average recovery rate of 95.7–110.7% for the determination of myoglobin. |
format | Online Article Text |
id | pubmed-9330231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93302312022-07-29 Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite Lima, Fernanda M. R. de Menezes, Alan S. Maciel, Adeilton P. Sinfrônio, Francisco S. M. Kubota, Lauro T. Damos, Flávio S. Luz, Rita C. S. Molecules Article Cardiovascular diseases are considered one of the leading causes of premature mortality of patients worldwide. Therefore, rapid diagnosis of these diseases is crucial to ensure the patient’s survival. During a heart attack or severe muscle damage, myoglobin is rapidly released in the body to constitute itself as a precise biomarker of acute myocardial infarction. Thus, we described the photoelectrochemical immunosensor development to detect myoglobin. It was based on fluorine-doped tin oxide modified with CdSeS/ZnSe quantum dots and barium titanate (BTO), designated as CdSeS/ZnSQDS/BTO. It was characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and amperometry. The anodic photocurrent at the potential of 0 V (vs. Ag/AgCl) and pH 7.4 was found linearly related to the myoglobin (Mb) concentration from 0.01 to 1000 ng mL(−1). Furthermore, the immunosensor showed an average recovery rate of 95.7–110.7% for the determination of myoglobin. MDPI 2022-07-26 /pmc/articles/PMC9330231/ /pubmed/35897951 http://dx.doi.org/10.3390/molecules27154778 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lima, Fernanda M. R. de Menezes, Alan S. Maciel, Adeilton P. Sinfrônio, Francisco S. M. Kubota, Lauro T. Damos, Flávio S. Luz, Rita C. S. Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite |
title | Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite |
title_full | Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite |
title_fullStr | Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite |
title_full_unstemmed | Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite |
title_short | Zero-Biased Photoelectrochemical Detection of Cardiac Biomarker Myoglobin Based on CdSeS/ZnS Quantum Dots and Barium Titanate Perovskite |
title_sort | zero-biased photoelectrochemical detection of cardiac biomarker myoglobin based on cdses/zns quantum dots and barium titanate perovskite |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330231/ https://www.ncbi.nlm.nih.gov/pubmed/35897951 http://dx.doi.org/10.3390/molecules27154778 |
work_keys_str_mv | AT limafernandamr zerobiasedphotoelectrochemicaldetectionofcardiacbiomarkermyoglobinbasedoncdsesznsquantumdotsandbariumtitanateperovskite AT demenezesalans zerobiasedphotoelectrochemicaldetectionofcardiacbiomarkermyoglobinbasedoncdsesznsquantumdotsandbariumtitanateperovskite AT macieladeiltonp zerobiasedphotoelectrochemicaldetectionofcardiacbiomarkermyoglobinbasedoncdsesznsquantumdotsandbariumtitanateperovskite AT sinfroniofranciscosm zerobiasedphotoelectrochemicaldetectionofcardiacbiomarkermyoglobinbasedoncdsesznsquantumdotsandbariumtitanateperovskite AT kubotalaurot zerobiasedphotoelectrochemicaldetectionofcardiacbiomarkermyoglobinbasedoncdsesznsquantumdotsandbariumtitanateperovskite AT damosflavios zerobiasedphotoelectrochemicaldetectionofcardiacbiomarkermyoglobinbasedoncdsesznsquantumdotsandbariumtitanateperovskite AT luzritacs zerobiasedphotoelectrochemicaldetectionofcardiacbiomarkermyoglobinbasedoncdsesznsquantumdotsandbariumtitanateperovskite |