Cargando…
Fabrication of a PVA-Based Hydrogel Microneedle Patch
[Image: see text] The degree of saponification, which is a dissolution characteristic of poly(vinyl alcohol) (PVA), is used to blend PVA to prepare a hydrogel microneedle (MN) patch. The MN patch was manufactured with an adjustable disassembly time using a molding process, and it was confirmed to ha...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9330234/ https://www.ncbi.nlm.nih.gov/pubmed/35910175 http://dx.doi.org/10.1021/acsomega.2c01993 |
Sumario: | [Image: see text] The degree of saponification, which is a dissolution characteristic of poly(vinyl alcohol) (PVA), is used to blend PVA to prepare a hydrogel microneedle (MN) patch. The MN patch was manufactured with an adjustable disassembly time using a molding process, and it was confirmed to have morphological stability and excellent needle formation. The permeability of the gelatin sheet, which is analogous to the skin elasticity coefficient of a real human, was confirmed. The penetration ratio had a very high value of 100% and sufficient physical properties to penetrate the skin. In the disassembly experiment, the MN patch was produced with ratios of lower:higher saponification of 6:4 (PVA6), 7:3 (PVA7), 8:2 (PVA8), 9:1 (PVA9), and 10:0 (PVA10). Degradation did not occur for PVA6 and PVA7 but occurred for PVA8, PVA9, and PVA10. A cytotoxicity test to investigate its suitability for use in the human body confirmed the cell viability of 80% or more and nontoxic properties. Therefore, sufficient cell viability was confirmed when compared to the existing products. |
---|